

2014 Risk and Profit Conference Breakout Session Presenters

"Knowledge for Life"

11. Adoption and Intensification of Conservation Practices, Risk and Policy

Jason Bergtold

<bergtold@k-state.edu>

Dr. Bergtold's research includes: the economics of adopting intensive conservation production practices and systems at the farm level; the impact of bio-energy alternatives and feedstock production on-farm; the interaction between agricultural practices, conservation policy and the environment at the farm level; and the development of applied discrete choice econometric modelling techniques. In addition, he has completed research examining the estimation of large demand systems and the international trade of peanuts. Dr. Bergtold teaches optimization techniques and methods at the graduate level.

Abstract/Summary

Conservation in cropping systems in Kansas is important for maintaining soil productivity and crop yields over time. Many farmers have already adopted conservation tillage practices, terraces, and similar conservation practices on their farm. This talk examines what it may take to get farmers to intensify their conservation efforts on farm and potential barriers to that adoption, such as risk, uncertainty, and cost. A number of conservation practices are considered, including continuous no-till, cover crops, variable rate application of inputs, and conservation crop rotations. Information about these practices and responses from an intensive farm survey conducted across the state of Kansas in 2014 will be presented.

Adoption and Intensification of Conservation Practices, Risk and Policy

Jason Bergtold, Elizabeth Canales and Jeff Williams

2014 Risk and Profit Conference August 22, 2014 Manhattan, Kansas

Purpose of Research

- To understand farmers' decision process for adopting conservation systems and practices on-farm to help inform research, extension, outreach and policy.
- To examine the incentives and barriers to the intensification of (or doing more) conservation on-farm.

Focus

In-field conservation practices

Continuous No-Till

Cover Crops

Conservation Crop Rotation

Variable Rate Technology

Continuous No-Till

- Consists in planting crops directly into the crop residue without disturbing the soil with tillage.
 - Disturbance is limited to nutrient injection.
- No-till across all the crops planted in a field.

Conservation Crop Rotation

- Implementation of a 3 or more year rotation with three or more crops types. (This could also include a 2 year rotation with double cropping.)
- The rotation includes a combination of high residue crops, grasses and/or legumes.

Cover Crops

- Single or multiple cover crop species planted between regular cash crops to protect the soil and improve soil organic matter.
- Cover crops species :
 - Legumes: winter peas, hairy vetch, cowpeas, crimson clover, sunn hemp, etc.
 - Cereal: rye, oats, millet, etc.
 - Grass: sorghum-sudangrass hybrid, etc.
- Variable costs of planting and managing cover crops in Kansas range from \$40/acre to \$100/acre.

Variable-Rate Application of Inputs

- Varying rates of inputs
 (e.g. fertilizer, lime,
 herbicides) within a field
 based on field
 requirements (e.g.
 changes in soil, high/low
 yielding areas).
 - Map-based
 - Sensor-based

Workshops

Table 1: Workshop locations and attendees

Table 1: Workshop locations and atter				
Wor	kshop location	Д	ttendees	
1	Salina		39	
2	Great Bend		32	
3	Colby		19	
4	Dodge City		14	
5	Wellington		21	
6	Hiawatha		13	
7	Topeka		25	
8	Manhattan		14	
9	Parsons		31	
10	Pratt		10	
11	Garnett		16	
12	Hays		14	
		Total	248	

- Sample was obtained from the Kansas Farm Management Association (KFMA)
- Timing: December 2013 to March 2014

Workshops

Table 1: Workshop locations and attendees

	21 1101.10p		o aa acce
Worl	kshop location	A ⁻	ttendees
1	Salina		39
2	Great Bend		32
3	Colby		19
4	Dodge City		14
5	Wellington		21
6	Hiawatha		13
7	Topeka		25
8	Manhattan		14
9	Parsons		31
10	Pratt		10
11	Garnett		16
12	Hays		14
		Total	248

- Many participants are already involved with conservation on their farm.
- Recall, we are interested in the intensification of conservation onfarm. Looking at what it would take to do more conservation.

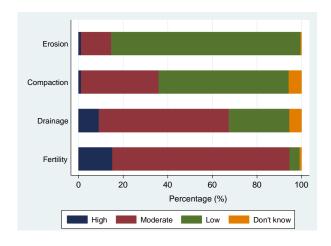
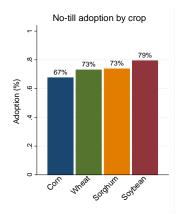

Farm Characteristics

Table 2. Average farm characteristics

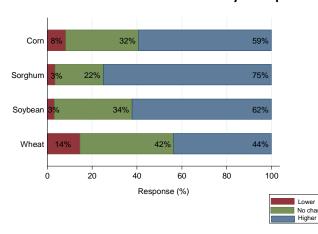
Variable	N	Mean	Min	Max	Census of Agriculture
Age	248	57.13	20	90	56.2 years
Average					
farm size	247	2,460	40	14,875	981 acres
Average	242	c 2h		0	¢ 420 020
sales value	242	6.2 ^b	1	9	\$ 438,020

^a Source: National Agricultural Statistics Service, USDA (2007) (> \$50K in Sales)

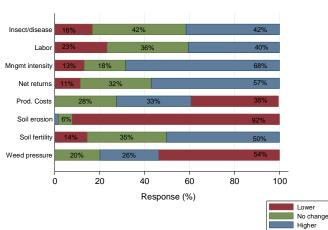
Soil condition


Continuous No-Till

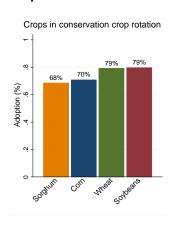
^b Mean sales of 6.20 corresponds to the sales category of \$400,000 to \$599,999


Continuous No-till

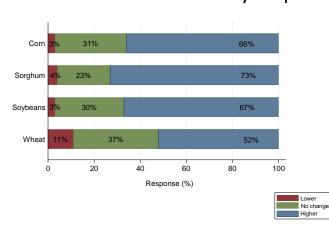
Continuous NT adoption by Region


Region	Adoption level (N=248)	Percentage of land (N=151)	
Western	64%	72%	
Central	69%	87%	
Eastern	51%	89%	
Total	61%	84%	

Perceived Yield effect by crop



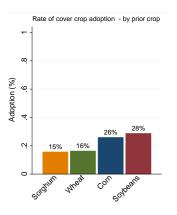
Conservation Crop Rotation


Conservation Crop Rotation

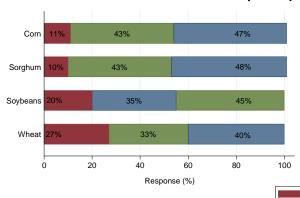
Conservation crop rotation adoption by Region

Region	Adoption level (N=248)	Percentage of land (N=156)
Western	51%	73%
Central	75%	85%
Eastern	55%	88%
Total	63%	84%

Perceived Yield effect by crop

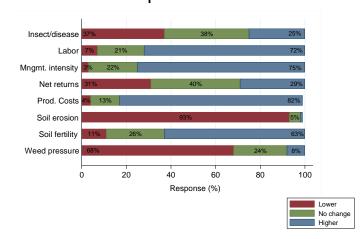


Cover Crops


Cover Crops

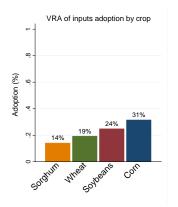
Cover crops adoption by

Region		
Region	Adoption level (N=248)	Percentage of land (N=84)
Western	13%	24%
Central	45%	30%
Eastern	34%	27%
Total	34%	28%

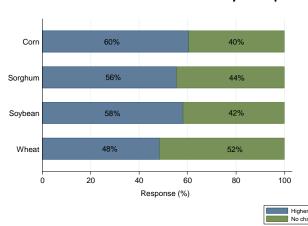


Perceived Yield effect by crop

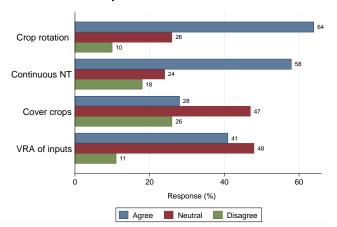
Cover crop – other effects



Variable Rate Technology


Variable Rate Application of Inputs

VRA of inputs adoption by Region


Region	Adoption level (N=248)	Percentage of land (N=64)
Western	6%	47%
Central	33%	56%
Eastern	31%	73%
Total	26%	63%

Perceived Yield effect by crop

Do these practices reduce risk?

Willingness to Adopt Conservation Practices

An exercise

 Willingness to adopt and intensify conservation practices on cropland under different contractual arrangements.

- Farmers evaluated 12 independent scenarios.
- They were asked whether they would adopt a system or stay with the status quo.
- Contract Features:
 - 1. Conservation Practices
 - 2. Incentive Payment
 - 3. Incentive Program
 - 4. Off-farm Environmental Benefits
 - 5. Riskiness: Impact on Net Farm Income

Contract Features

1. Conservation Practices:

Continuous No-Till

Cover Crops

Conservation Crop Rotation

Variable Rate Technology

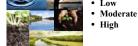
Contract Features

2. Incentive Payment

- \$ /acre year (\$0, \$15, \$30, \$45, \$60, \$75)

3. Incentive Program

Federal Program


Carbon Credit Payment through a Carbon Market

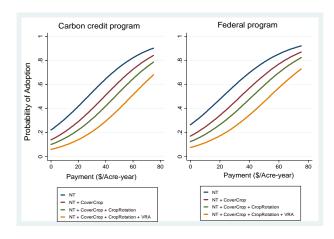
Contract Features

4. Off-farm Environmental Benefits

5. Risk: Changes in net farm income

- Average change in net income (%)
- Probability of occurrence

Conservation	Continuous no-till		
Practice	Cover Crops		
	Variable rate application of inputs		
Incentive	Contract Condit Downsont through a Contract Mandata		
Program	Carbon Credit Payment through a Carbon Market		
Incentive			
Payment	\$45/acre		
	Average change in net Probability of		
	income over 5 years	Occurrence	
Biskinson			
Riskiness	5% Loss	10% Very unlikely	
	No change	80% Very likely	
	5% Gain	10% Very unlikely	
Off-site			
Environmental	Moderate		
Impact			


Would you adopt this system or stay with the Status Quo?

- ☐ Adopt
- ☐ Status Quo

Results

- The level of change in net farm income is a significant factor in farmers' adoption decision.
- Farmers care about the off-farm environmental impacts associated with the practices they use on-farm
 - The results suggest that farmers are less likely to adopt contracts with lower off-farm environmental benefits.
- The result suggests a preference for federal programs over market-based programs.
 - We found a lower likelihood of adoption, for the same level of incentive payment, if the mechanism through which the incentive payment is offered is a carbon credit program.
 - Risk associated with the potential market fluctuation in carbon credit prices
 - Government intervention carbon policy

Adoption of Conservation Practice Bundles By Program

Results

- A larger incentive is needed to induce the adoption of cover crops and variable rate application of inputs (compared to continuous NT and conservation crop rotation).
 - These practices are the least adopted across the state.
 - Services available: precision agriculture
- Main factors limiting the adoption/entering into a conservation contract:
 - Restrictiveness of programs
 - Production costs
 - 62% of the farmers would only adopt conservation practices if these result in higher net returns.

Farmers Willingness-to-Accept for Contract Attributes

Contract Attributes	WTP	St. Dev.
Continuous No-till	5.38**	(2.748)
Cover Crops	16.24***	(5.689)
Conservation Crop Rotation	10.65***	(3.862)
Variable Rate Application	16.00***	(5.493)
Low Off-farm Environmental Benefits	10.11**	(4.645)
Medium Off-farm Environmental Benefits	7.04*	(4.584)
Carbon Credit Program	6.86**	(3.364)

The amounts in the table above represent how much a farmer would have to be paid under contract to accept that contract option or adopt that particular conservation practice.

Comments?