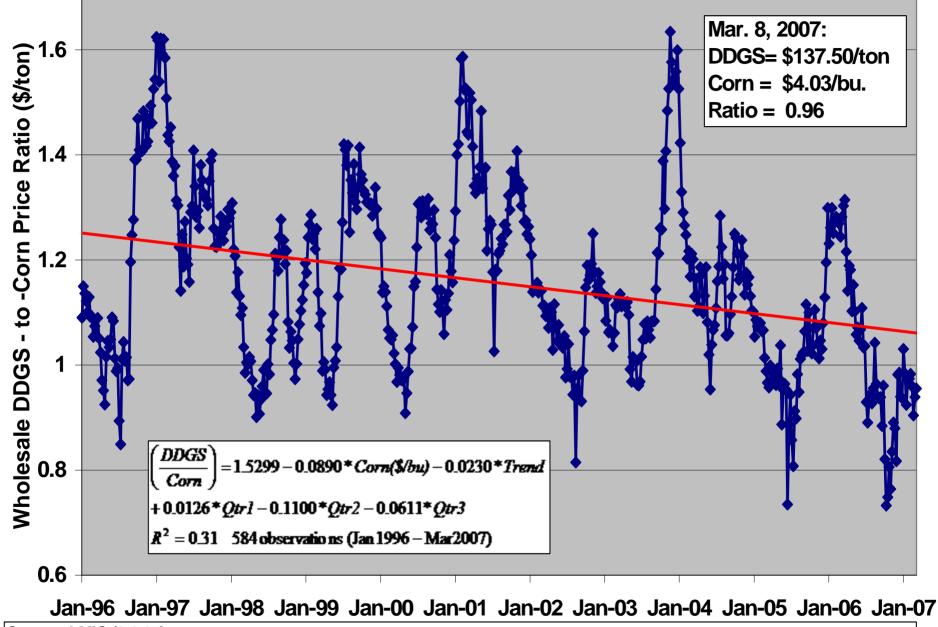
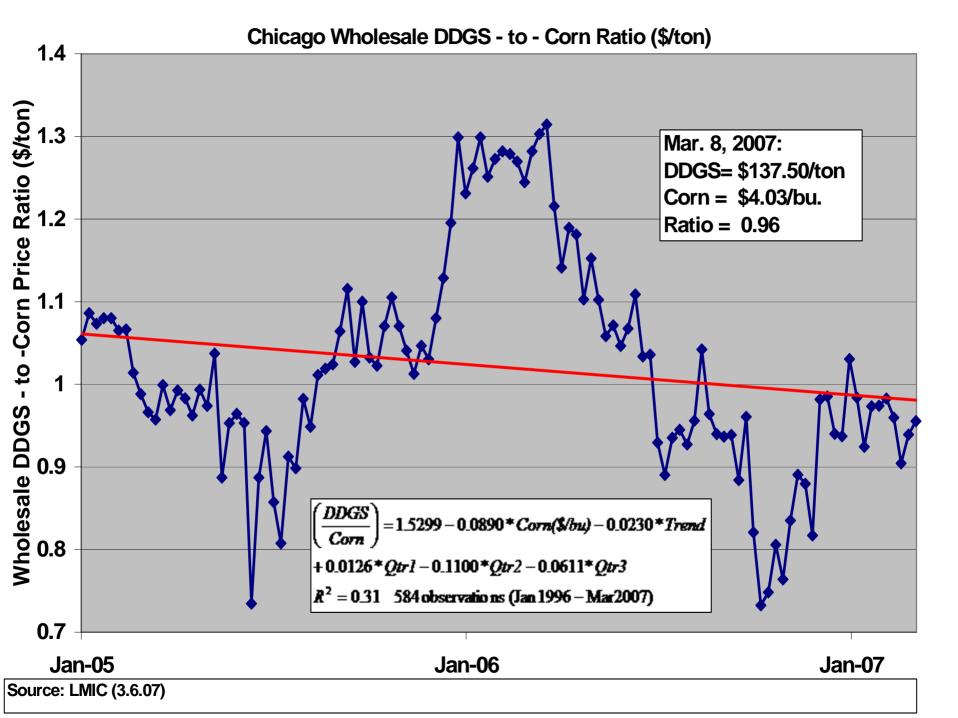
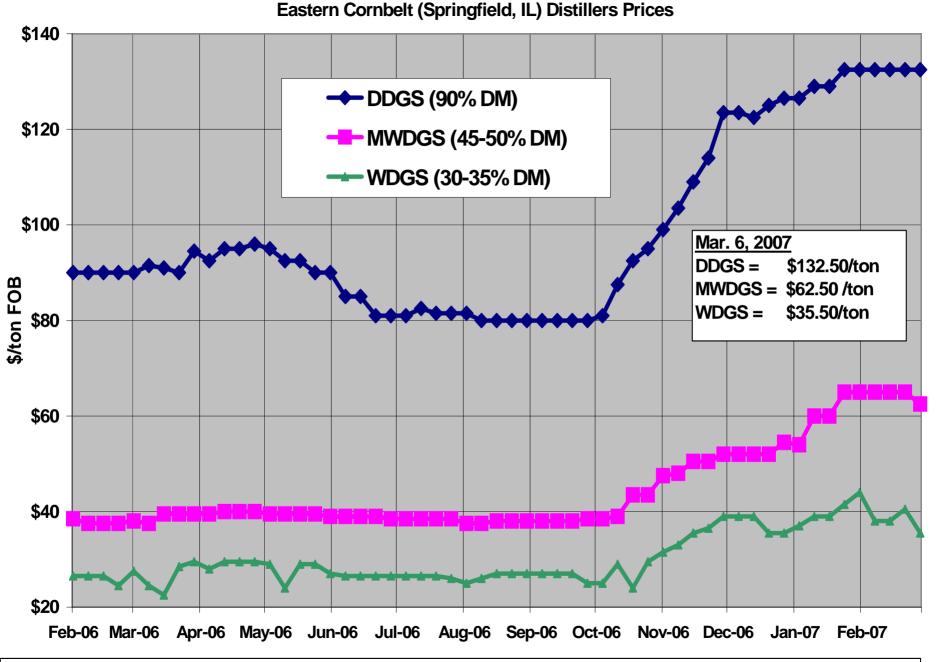

Addressing Issues Related to Co-Products of Biofuels

Dr. Glynn Tonsor, Dept. of Agricultural Economics Dr. Steven Rust, Dept. of Animal Science Michigan State University

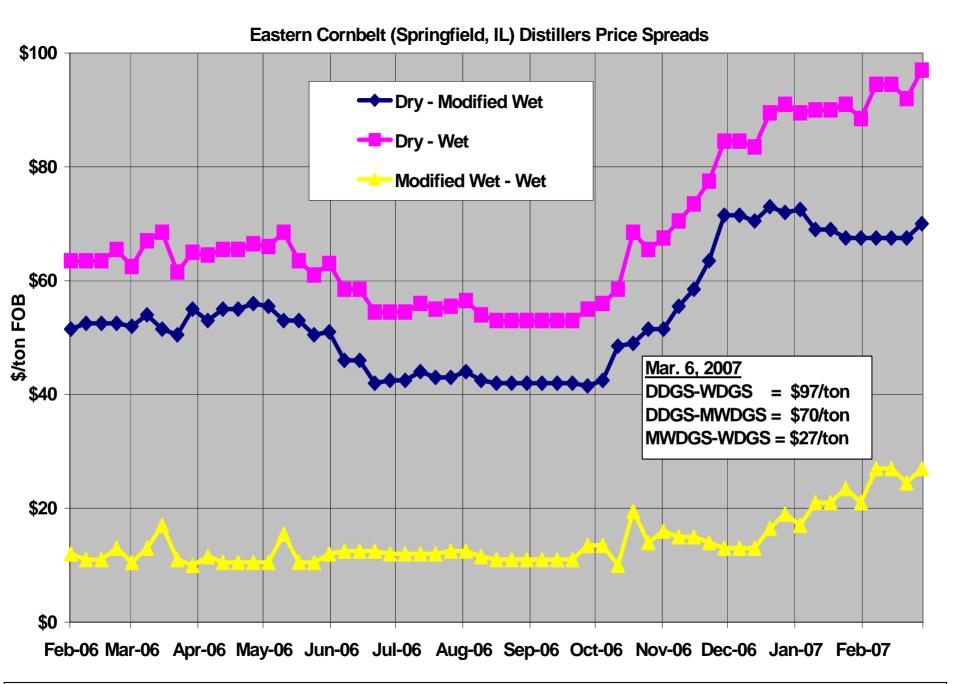
> Michigan Agri-Energy Conference March 13, 2007


U.S. Ethanol Biorefinery Locations

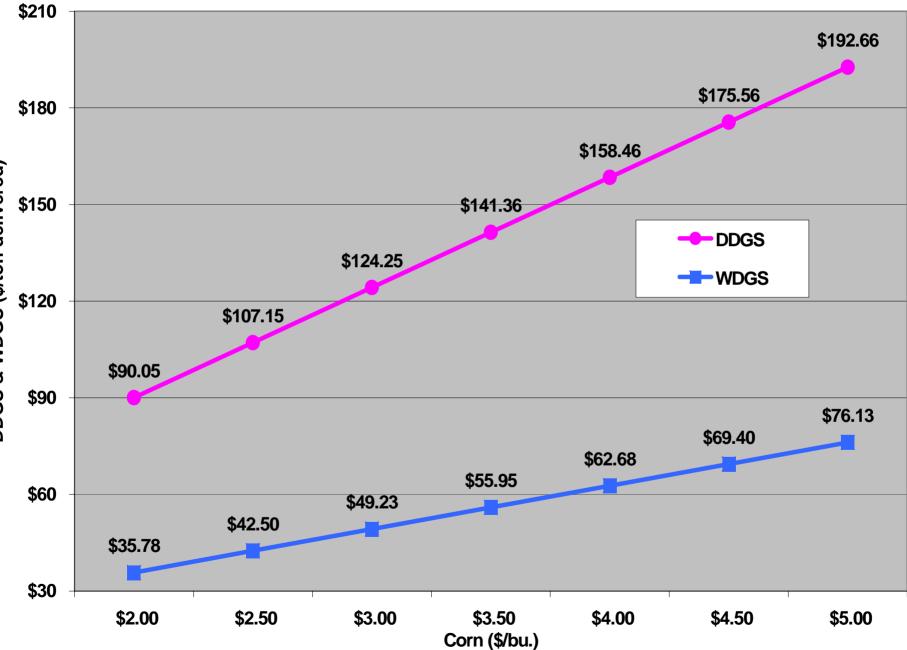



Source: MI Corn Grower's (as of August 2006) http://www.micorn.org/downloads/MiEthanolPlantsAug06.pdf

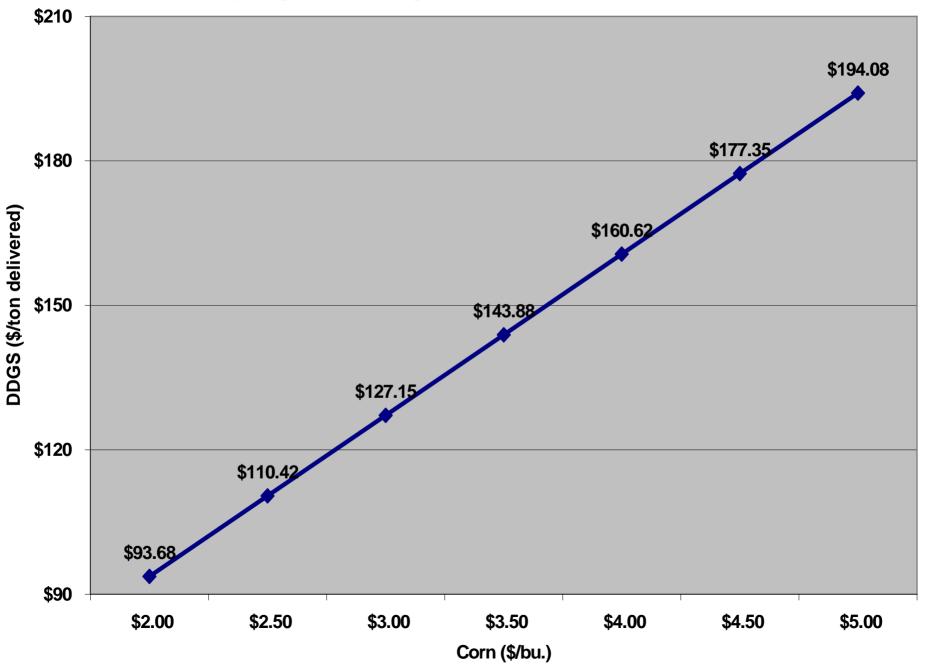
Chicago Wholesale DDGS - to - Corn Ratio (\$/ton)



Source: LMIC (3.6.07)



Source: Livestock Marketing Information Center and USDA-AMS; Last updated 3/6/2007


Source: Livestock Marketing Information Center and USDA-AMS; Last updated 3/6/2007

DDGS & WDGS Prices Equating Cattle Finishing Feed Costs of 0% and 40% Inclusion Rates

DDGS & WDGS (\$/ton delivered)

DDGS Prices Equating Swine Finishing Feed Costs/Ton of 0% & 10% DDGS Inclusion Rates

Lean Hog Price Increase Evaluation

Live Hog (\$/cwt) Increase: DDGS = 0% DDGS with \$2.50 cor
--

			/						T			
D	DGS	DDGS		Corn (\$/bu.)								
(\$	S/ton)	Inclusion	\$	3.00	\$	3.50	\$	4.00	\$	4.50	\$	5.00
\$	-	10%	\$	0.15	\$	1.82	\$	3.48	\$	5.14	\$	6.80
\$	-	20%	\$	(1.59)	\$	(0.15)	\$	1.28	\$	2.72	\$	4.15
\$	125	10%	\$	1.86	\$	3.52	\$	5.19	\$	6.85	\$	8.51
\$	125	20%	\$	1.83	\$	3.27	\$	4.70	\$	6.13	\$	7.57
\$	150	10%		NA		NA	\$	5.53	\$	7.19	\$	8.85
\$	150	20%		NA		NA	\$	5.38	\$	6.82	\$	8.25

Assumptions: SBM=\$200/ton, 3.2 F/G ratio, all prices are "delivered prices," and including DDGS results in no changes in carcass composition, days on feed, total feed intake, or changes in manure handling costs. Also assumes no change in other inputs (e.g., feeder pig price).

DGS Market Access

- 2003-04 NASS DGS Survey: 721 IA & MN Producers & 25 Ethanol Plants
- Ethanol Plants (2004)
 - 30% had minimum order for DGS; avg. min = 9.8 tons
 - DGS sales agreements:

Mont	Monthly		terly	<u>6-M</u>	<u>onth</u>	Yea	arl <u>y</u>
2002	2003	2002	2003	2002	2003	2002	2003
10%	15%	10%	13%	9%	12%	NA	20%
	9	Spot	Clock		No Cont	ract	
	200	<mark>2</mark> 2003	2002	2003	2002	2003	
	389	<mark>%</mark> 18%	11%	10%	<mark>19%</mark>	13%	

NASS report accessed 1/25/07 at: http://www.nass.usda.gov/Statistics_by_State/Iowa/Links/2004_national_dg.pdf

Past NASS DGS Survey: Ethanol Plants (2004)

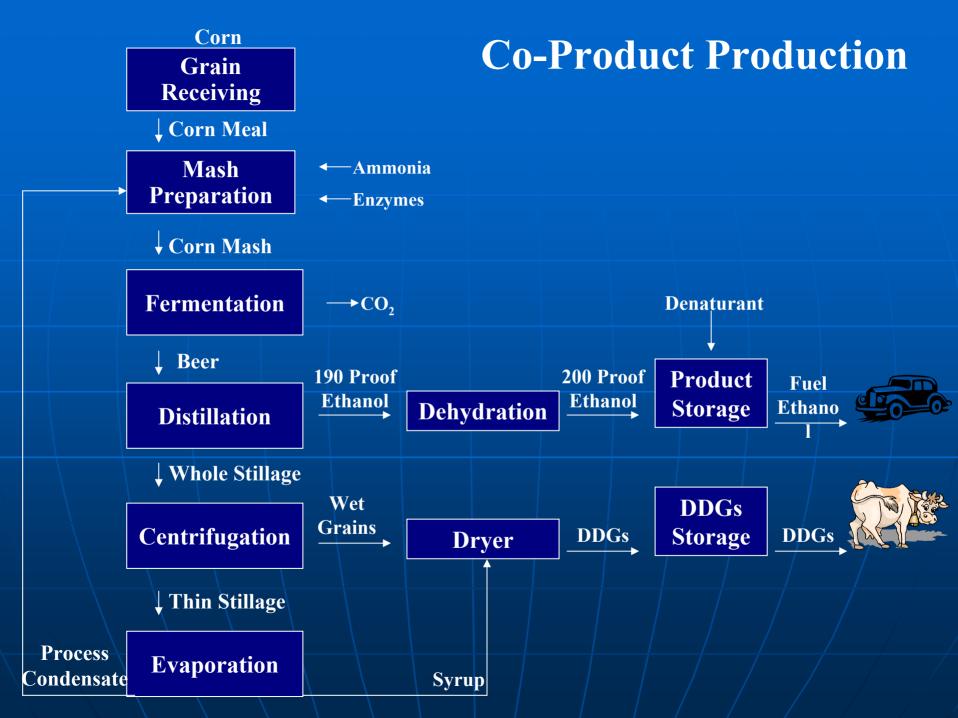
	Transportation of DDGS, 2003									
	% Plants Using	% Product Hauled	Average Miles	Average Transport						
Paid by Plant	Transport Mode	by Transport Mode	Hauled	Costs/Ton						
Rail	100	16	1,550	30						
Truck	67	10	82	4						
Paid by Buyer										
Rail	50	16	1,812	40						
Truck	100	58	133	7						
		ransportation of WDG	•							
	% Plants Using	% Product Hauled	Average Miles	Average Transport						
Paid by Plant	Transport Mode	by Transport Mode	Hauled	Costs/Ton						
Rail	0									
Truck	100	23	61	4						
Paid by Buyer										
Rail	0									
Truck	100	77	60	4						

NASS report accessed 1/25/07 at: http://www.nass.usda.gov/Statistics_by_State/Iowa/Links/2004_national_dg.pdf

DGS Feed Market Existence Plant Response to Rising Natural Gas

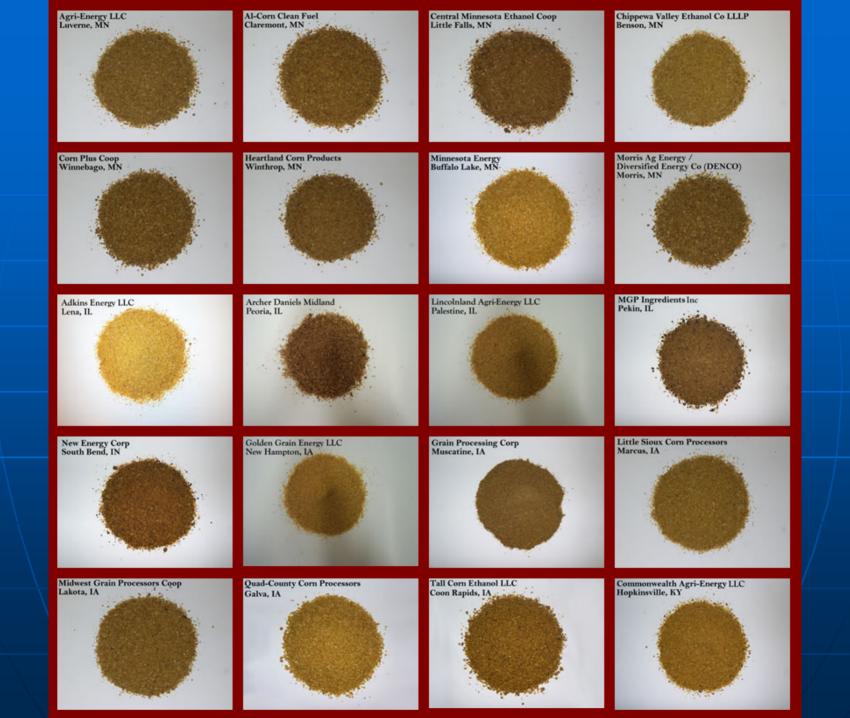
Switch from DDGS to WDGS???

• Burn DDGS ???


Potential Usage of DGS in Michigan

	MSU Estimate						
	Diet,	# Head	Tons/yr	Bu/yr			
	%		(thousand)	(million)			
Dairy	15	561,600	455.5	16.3			
Beef	27.5	381,000	303.4	10.8			
Hogs	17.5	1,954,000	119.3	4.3			
Poultry	17.5	14,810,000	106.8	3.8			
Horses	5	150,000	27.4	1.0			
Sheep	15	88,000	14.5	.5			
Total			1,026.7	36.7			

Estimated 2007-2008 production= 32.8


Product Yield From Corn

<u>Corn</u>		<u>Wet-milling, l</u>	b/bu	Dry-milling	, lb/bu
Starch	61.0%	Starch	31.5	Ethanol	21.6
Corn oil Protein	3.8% 8.0%	Gluten feed	12.5	(2.7 gal)	
		Gluten meal	2.5	DDGS	18.0
Fiber	11.2%	Corn oil	1.6	CO ₂	18.0
Moisture	16.0%				

Nutrient Content of Corn Distiller's Grains and Distiller's Solubles on (100% DM Basis).

Nutrient	Distiller's Grains	Distiller's Solubles
C. protein, %	33.5	18.5
Crude fat, %	9.0	15.7
Crude fiber, %	9.5	2.5
Ash, %	3.0	8.4
Ca, %	0.04	0.06
P, %	0.54	1.28

Variation in Nutrient Content

	DM	СР	Fat	ADF	Fiber	TDN	Ash
Average	89.2	30.9	10.8	12.2	7.2	86.5	6.0
Range	86.2- 92.4	28.3- 33.9	3.5- 12.8	0- 21.0	5.4- 10.6	78.7- 89.0	3.0- 9.8
Caro, MI	89.6	32.6	11.0	12.8	7.4	86.6	6.08
Requirement/ max the diet		12.0	6.0				
40% of diet	35.7	12.4	4.3	4.9	2.9	34.6	2.4

34 samples, Shurson, 2006

Variation in Mineral Content

	Ca	Р	К	Mg	S	Na	CI	Zn	Mn	Cu	Fe
Average	.07	.77	1.0	.30	.68	.18	.09	62	19	6	127
Range	.02- .51	.42- 1.06	.45- 1.33	.14- .45	.34- 1.93	.01- .52	0- .36	38- 128	9- 27	3- 13	77- 239
Caro, MI	.02	.99	1.06	.38	.89	.16	.18	93	15	6	96
Required	.50	.27	.65	.10	.10	.08		30	40	8	50
40% of diet	.03	.31	.40	.12	.27	.07	.04	25	8	2	51

Ca-Cl=% of diet; Zn-Fe= ppm 34 samples , Shurson, 2006

General Limitations

- Variation in nutrient content
- High phosphorus levels
- Amino acid imbalance
- Cost
- Reduced intakes at high inclusion levels
- High trans-fat content

Suppresses gene expression for fat synthesis in mammary gland

General Limitations (con't)

Manure volume
Low energy content
Nutritionists
High sulfur content
Mycotoxins
Womitoxin

- Vomitoxin
- Zearelonone
- Antibiotic residues

Product Handling & Storage

Can be mixed with other feedstuffs and ensiled

- 70:30 Wet DGS: Soybean hulls
- 50:50 Wet DGS: Corn silage
- Storage length
 - Dry 60-90 d
 Wet 5-14 d
- Shrinkage
 - Dry = 2-5% Shrink
 - Wet = 10-50% Shrink

WDGS is difficult to store alone in silage bags

Alfren / Na+n | WP North | Up th

Storage of Wet DGS

Spoilage Recovery

- Covered bunker silo 3-4 in. 91.5%
- Uncovered bunker silo 12 in. 90.4%
- Some red and white mold
- Temperature
 - > 200 °F when it leaves the plant
 - May be 100 °F upon arrival at the farm
 lowa, 2006

Sulfur Requirements

Requirement .15% diet DM **Maximum tolerable concentration** .40% of diet DM **Chronic toxicity** J DMI **J** Growth ↓ Reduced copper status **Acute toxicity** Polioencephalomalacia Restlessness, diarrhea, muscular twitching, dyspnea, death

Effects of High S Containing **DGS on Dietary S Levels** Basal diet of 80% corn, 15% corn silage and 5% supplement • Dietary S level = .13% Replace 40% of corn with DGS (1% S) Contribute .4% to total diet Total dietary sulfur level= .48% With 1% S in DGS, maximum inclusion rate should be 30%

Effects of DGS S Levels on Dietary S Content^a (% DM)

	S Content of DGS				
	%				
Dietary inclusion rate, % DM	.60 .80 1.	0			
20	.21 .25 .2	9			
30	.27 .33 .3	7			
40	.33 .41 .4	9			

^a Basal diet contains 15% corn silage, .3% urea, and corn

^b Doesn't account for S intake from water

ADD Calcium!!!!!

The Ca to P ratio will be altered with inclusion of DGS
 DGS is a high P feedstuff
 Risk of urinary calculi
 Add calcium to the diet
 Limestone is relatively inexpensive

Supplemental Calcium Carbonate Required To Maintain Ca:P Ratio (% DM)

	P Content of DGS, %				
Dietary DGS Inclusion	.60	.80	1.0		
Rate, % DM					
20	.88	.99	1.11		
30	.93	1.10	1.28		
40	.98	1.22	1.45		

Consultant Recommendations Consultant A Recommends only feeding wet product Dry DGS limits intake 10-30% inclusion rate Consultant B Prefers wet DGS unless Dry is priced lower than corn Inclusion rate limited by <u>S</u> and fat content

Feeding Recommendations For Distillers Grains (Beef)

- Protein Source (1-3 lb/d)
- Energy Source (4-9 lb/d)
- Mineral Balance (Ca:P),
 - Add limestone
 - Ca:P>1.1
- Does Not Replace All Roughage Sources
- Monitor S Content of DGS

•Maximum allowable level = .4%

- •Feeding 40 % DGS that has 1% S is risky!!!!
- Prefer Wet Over Dry DGS

6-15%

20-40% (maybe more)

Feeding Recommendations For Beef Cows

Gestation • 3-5 lb of dry DGS • 8-14 lb wet DGS Lactation • 6-8 lb dry DGS • 17-23 lb wet DGS May need to remove P and S from mineral supplements

Summary Tips

- Overall inclusion level of CDG for dairy cows 15 to 20% of DM. Will depend on:
 - Milk production level of cows, groups of cows
 - Other feeds, forage base of ration; effective-fiber
 - Fat content and Fermentability of whole ration (more rumen fermentable rations can not contain as much CDG w/o depressing milk fat test)
 - Quality of crude protein: dietary EAA; RUP; RDP; heatdamaged?
 - Phosphorus and sulfur content?
- For high yielding and early lactation cows:
 - Inclusion level for CDG: start at 5 to10% of ration DM
 - Proceed with caution ~ monitor milk fat test, MY, feed intake
 - <u>Highly fermentable rations</u> (high corn silage, high moist. corn, etc.) as typically fed in Michigan <u>will limit level of CDG</u>
- Routine lab analyses: analyze, analyze, analyze

Feeding Recommendations For Swine

20-30% of diet

- may have belly softness at higher levels
- DM intake may be reduced at higher levels
- "ramp to to higher levels"
 Balance on available P
 Monitor amino acid levels
 lysine, tryptophan, threonine,
 - methionine

Feeding Distillers Grains to Sheep

Greatest Applications:

- Ewes: High energy and protein contents in DDGS work well to supplement ewe diets especially those based on low quality or mature forages (gestation, lactation).
- Lambs: High energy and protein contents in DDGS can be incorporated into typical growing finishing lamb diets at 20% with no change in growth rate.

Additional Thoughts on Use of Distillers Grains

Value relative to corn (DM basis)

- Wet 110-120%
- Dry 100%
- Adjust nutrient management plans
 - P
 - Potential runoff from storage piles

DDGS & WDGS Prices Equating Cattle Finishing Feed Costs of 0% and 40% Inclusion Rates

Summary

 DDGS can offer opportunities for the livestock industries
 Beneficial if plants reduce P, S and/or fat content
 Reduce nutrient variability

Distillers Co-products Will Change In The Future

- Use DGS as feedstock for cellulosic ethanol production
- Use dry DGS as replacement for natural gas
- Remove oil
 - Biodiesel
- Food/confectionary uses
 Other ????

DGS is a great feed for livestock but does create some additional environmental challenges!!!

Glynn Tonsor Dept. of Agricultural Economics, MSU Email: <u>gtonsor@msu.edu</u>

Webpage: http://www.msu.edu/user/gtonsor/

Steven Rust Dept. of Animal Science, MSU Email: <u>rust@msu.edu</u>

http://www.mienergy.msu.edu/