2009 Kansas Wheat District Seminars

What to Consider with Cellulosic Biomass Harvest

Daniel O'Brien & Troy Dumler Extension Agricultural Economists Ron Madl, BIVAP Director

K-State Research and Extension

A Decision Making Model for Cellulosic Biomass Contracts

- Effort funded by Kansas Wheat-KAWG
 - · K-State, Oklahoma State & NRCS working together
- **Purpose**: To develop a biomass contract sales decision making model for Farmers
 - To help Kansas Farmers determine whether it is profitable to sell their crop biomass on contract for cellulosic ethanol production

Key Biomass Contract Issues

- Allowable Crop Residue Removal (NRCS)
 - Prevention of Wind & Water Erosion
- Biomass Contract Income, Terms (Company)
- Farmer's Baling-Handling-Storage Costs
- Crop Nutrient Losses from Biomass Harvest
- (Potential) Soil Moisture Losses from Residue Cover Removal ⇒ Yield/\$ Losses
- Other: In-Field Storage Area, Carbon Trading...

A Partial Budget Approach to Economic Decisions:

Benefits Less Costs = Profitability

Benefits	Costs
A. Revenue <i>Increases</i>	C. Revenue <i>Decreases</i>
B. Cost <i>Decreases</i>	D. Cost <i>Increases</i>
Total Benefits (A + B)	Total Costs (C + D)

Biomass Contract Specifications

Abengoa Contract Terms, January 2009

1-Time Signup bonus	\$1.00 /acre
Yearly Biomass Reservation Payment	\$0.50 /acre
Biomass Contract Base Payment	\$2.00 /acre
Biomass Production Payment (option)	\$5.00 /ton
Nutrient Removal Replacement (option)	\$8.00 /ton
Residue baled & removed by Company (option)	

A. Revenue Increases

■ Biomass Acreage Payments:

– Signup Payment: \$1.00 /acre

– Annual Reservation Payments: \$0.50 /acre

■ Biomass Base Contract Payment \$2.00 /acre

■ Biomass Production Payment \$5.00 /ton

■ Compensation for Crop Nutrient Removal

– @ Estimated Replacement Cost \$8.00 /ton

■ In-Field Storage Site & Carbon Credit Payments?

B. Cost *Decreases*

- In-Field Baled Biomass Storage Site (?)
 - Effect of non-producing acres used for in-field storage would be "prorated" over all acres from which biomass was harvested
 - Decreased crop expenses: \$/acre

C. Revenue *Decreases*

- Wind & Water Erosion ⇒ Yield Effects
 - NRCS determines allowable biomass harvest
 - Impact accumulates over time \$/acre
- Soil Moisture Depletion Caused by Crop Residue Removal ⇒ Crop Yield Effects
 - –
 ↓ Crop Income from soil moisture loss \$/acre
- In-Field Storage Site Crop Losses \$/acre
- Carbon Credits (undefined) \$/acre

D. Cost *Increases*

- Farmer's Biomass Harvest, Baling & Handling Costs
 - Farmer vs Contractor responsibilities for biomass harvest-handling operations \$/acre
- Crop Nutrient Replacement Costs
 - ☆ Fertilizer costs to replace nutrients lost in crop stover/biomass removal \$/acre
- In-Field Storage Site Preparation Cost \$/acre

Biomass Production

■ Figuring Crop Stover Production

Crop Yield (bushels per acre)

- x Crop Weight (pounds per bushel)
- x Stover Production Efficiency_(lb stover / lb grain)
- = Stover Production (pounds per acre)

■ Stover Production Efficiency

- Corn & Milo: 1.00 lb Stover / lb Feedgrain

- Wheat: 1.67 lb Stover / lb Wheat

Soybeans:0.75 lb Stover / lb Soybeans

Biomass Production Estimates

	Corn (Irrig)	Wheat	Milo (Irrig)
Crop Yield (bu/ac)	200 bu	45 bu	125 bu
Test Weight (lb/bu)	56 lb	60 lb	56 lb
Stover Prdn. Efficiency (lb. Stover / lb. Grain)	1.00	1.67	1.00
Pounds of Stover (lb/acre)	11,200	4,500	7,000
Tons of Stover (tons/acre)	5.6 t	2.25 t	3.5 t

Corn Stover for Biomass Harvest

200 bu Irrig., 1.00 Stover Production Efficiency

Scenario	Residue Production	Residue Harvested	Residue Harvested	Residue Remaining
	lbs/acre	lbs/acre	tons/acre	%
Α	11,200	1,000	0.50 ton	91 %
В	11,200	2,000	1.00 ton	82 %
С	11,200	3,000	1.50 ton	73 %
D	11,200	4,000	2.00 ton	64 %
Е	11,200	5,000	2.50 ton	55 %

Wheat Straw for Biomass Harvest

45 bu, 1.67 Stover Production Efficiency

Scenario	Residue Production Ibs/acre	Residue Harvested Ibs/acre	Residue Harvested tons/acre	Residue Remaining %
А	4,500	500	0.25 ton	89 %
В	4,500	1,000	0.50 ton	78 %
С	4,500	1,500	0.75 ton	67 %
D	4,500	2,000	1.00 ton	56 %
Е	4,500	2,500	1.25 ton	44 %

Milo Stover for Biomass Harvest

125 bu Irrig., 1.00 Stover Production Efficiency

Scenario	Residue Production Ibs/acre	Residue Harvested Ibs/acre	Residue Harvested tons/acre	Residue Remaining %
А	7,000	500	0.25 ton	93 %
В	7,000	1,000	0.50 ton	86 %
С	7,000	1,500	0.75 ton	79 %
D	7,000	2,000	1.00 ton	71 %
Е	7,000	2,500	1.25 ton	64 %

Crop Nutrients Removed from Biomass Harvest

Crop Nutrient	Corn/Milo	Wheat	Soybean
	Lbs /ton	Lbs /ton	Lbs /ton
	of stover	of stover	of stover
Nitrogen (N)	17 lb	11 lb	17 lb
Phosphorous (P ₂ O ₅)	4 lb	3 lb	3 lb
Potassium (K ₂ O)	50 lb	15 lb	13 lb
Sulfur (S)	3 lb	2 lb	2 lb

Value of Removed N & P₂O₅

82-0-0 @ \$650/ton, 11-52-0 @ \$510/ton

	Residue Removal Rates		
Crop	1 Lg Sq Bale 1,659 lb / acre	2 Lg Sq Bales 3,318 lb / acre	
Corn & Milo \$6.86 / ton of stover	\$5.69 / acre	\$11.38 / acre	
Wheat \$4.56 / ton of stover	\$3.79 / acre	\$7.57 / acre	

Farmers' Stover Harvesting, Handling & Storage Costs

- In-Field Operations
 - Chopping Stalks?
 - Raking Stover?
 - Swathing Stover?
 - Baling (Large Square vs Large Round Bales)?
 - Hauling to edge of the Field?
 - Short-term Storage of Bales at edge of Field?
- Custom Rates Used for Cost Estimates

Crop Yield Losses from Decreased Soil Moisture

- In Grain Producing Stages of Growth, 1 inch of available water produces...
 - 12 bu. of Corn per acre
 - 11 bu. of **Grain Sorghum (Milo)** per acre
 - 5 bu. of Wheat per acre
- \$Value of 1 inch H₂0 in deficit conditions

- Corn: \$42 /acre @ \$3.50 /bu.- Milo: \$35 /acre @ \$3.15 /bu

- Wheat: \$25 /acre @ \$5.00 /bu.

3 Irrigation Moisture-Yield Scenarios

1) Excess Irrigation Capacity

 Crop residue provides no benefit to crops in suppressing soil water losses

2) Increased Irrigation Application

 Crop residue saves water, reducing irrigation needs ⇒ No effect on Yields

3) Deficit Soil Water Supplies

 Crop water needs exceed soil moisture plus irrigation ⇒ Lower Yields

Irrigation Moisture-Yield Impacts

\$ Impact of "Increased" & "Deficit" Scenarios

2) "Increased Irrigation" Scenario

\$Impact = Cost to applied added water
 \$5.80/acre inch of water (KSU pumping cost est.)
 x Inches per acre of additional water applied

3) "Deficit Soil Water" Scenario

\$Impact = \$Value of lost crop production
 Deficit Water (inches/acre water deficit)
 x Yield response (bushels/acre/inch of water)
 x Crop Price (\$/bushel)

2 Dryland Moisture-Yield Scenarios

1) Adequate Soil Moisture

 Crop residue provides no benefit to crops in suppressing soil water losses

2) Deficit Soil Moisture Supplies

 Crop water needs exceed soil moisture reserves plus rainfall ⇒ Lower Yields

Dryland Moisture-Yield Impacts

\$ Impact of "Adequate" & "Deficit" Scenarios

1) "Adequate Moisture" Scenario

No \$Impact of Crop Residue removal

2) "Deficit Soil Water" Scenario

\$Impact = \$Value of lost crop production
 Deficit Water (inches/acre water deficit)
 x Yield response (bushels/acre/inch of water)
 x Crop Price (\$/bushel)

Irrigated Corn Stover Scenario Assumptions

Center Pivot System (125 acres of corn)

Yields: 200 bushels/acre

• Corn\$: \$3.50 /bushel

• Farmer Operation: Raking of stover only

"Increased Irrigation" Scenario: +1 acre inch

Harvested Stover (2 Scenarios)

1 Lg Sq Bale / acre (0.83 tons stover /acre)

2 Lg Sq Bales / acre (1.66 tons stover /acre)

Irrigated Corn Stover Scenario #1

Preliminary results: 1 Lg Sq Bale (0.83 tons) / acre

Benefits		Costs
A. Revenues Increase	<u>s</u>	C. Revenue <i>Decreases</i>
Reservation Payment	\$2.50 /a	Crop Yield Losses (1" H ₂ O) \$5.80 /a
Biomass Payment	\$4.15 /a	Storage Site Income loss \$0.36 /a
Nutrient Compensation	\$6.64 /a	
B. Cost <i>Decreases</i>		D. Cost Increases
		Harvest, handling, etc. \$4.21 /a
		Nutrient Replacement \$5.69 /a
Total Benefits: \$1	3.28 /a	Total Costs: \$16.06 /a

Net: (\$3.28) /acre

Irrigated Corn Stover Scenario #2

Preliminary results: 2 Lg Sq Bale (1.66 tons) / acre

Benefits		Costs
A. Revenues <i>Increases</i>		C. Revenue <i>Decreases</i>
Reservation Payment \$2	.50 /a	Crop Yield Losses (1" H ₂ 0) \$5.80 /a
Biomass Payment \$8	.29 /a	Storage Site Income loss \$0.36 /a
Nutrient Compensation \$13	.27 /a	
B. Cost <i>Decreases</i>		D. Cost Increases
		Harvest, handling, etc. \$4.21 /a
		Nutrient Replacement \$11.38 /a
Total Benefits: \$24.0)7 /a	Total Costs: \$21.75 /a

Net: +\$2.32 /acre

Dryland Wheat Straw Scenario Assumptions

- Nonirrigated Quarter (160 acres of wheat)
- Yields: 45 bushels/acre
- Corn\$: \$5.00 /bushel
- Farmer Operation: Raking of straw only
- "Deficit Water" Scenario: (-1) acre inch
- Harvested Straw (2 Scenarios)
 - 0.5 Lg Sq Bale / acre (0.41 tons straw /ac)
 - 1.0 Lg Sq Bales / acre (0.83 tons straw /ac)

Dryland Wheat Straw Scenario #1

Preliminary results: 0.5 Lg Sg Bale (0.41 tons) / ac

Benefits		Costs
A. Revenues Increase	<u>s</u>	C. Revenue <i>Decreases</i>
Reservation Payment	\$2.50 /a	Crop Yield Losses (1" H ₂ 0) \$25.00 /a
Biomass Payment	\$2.07 /a	Storage Site Income loss \$0.36 /a
Nutrient Compensation	\$3.32 /a	
B. Cost <i>Decreases</i>		D. Cost Increases
		Harvest, handling, etc. \$4.21 /a
		Nutrient Replacement \$1.89 /a
Total Benefits: \$7	.89 /a	Total Costs: \$31.48 /a

Net: (\$23.57) /acre

Dryland Wheat Straw Scenario #2

Preliminary results: 1.0 Lg Sq Bale (0.83 tons) / ac

Benefits		Costs
A. Revenues Increase	<u>s</u>	C. Revenue <i>Decreases</i>
Reservation Payment	\$2.50 /a	Crop Yield Losses (1" H ₂ 0) \$25.00 /a
Biomass Payment	\$4.15 /a	Storage Site Income loss \$0.36 /a
Nutrient Compensation	\$6.64 /a	
B. Cost <i>Decreases</i>		D. Cost Increases
		Harvest, handling, etc. \$4.21 /a
		Nutrient Replacement \$3.79 /a
Total Benefits: \$1	3.28 /a	Total Costs: \$33.36 /a

Net: (\$20.07) /acre

Irrigated Milo Stover Scenario Assumptions

Center Pivot System (125 acres of milo)

Yields: 125 bushels/acre

• Corn\$: \$3.15 /bushel

Farmer Operation: Raking of stover only

"Increased Irrigation" Scenario: +1 acre inch

Harvested Stover (2 Scenarios)

- 0.5 Lg Sq Bale / acre (0.41 tons stover /ac)

1.5 Lg Sq Bales / acre (1.24 tons stover /ac)

Irrigated Milo Stover Scenario #1

Preliminary results: 0.5 Lg Sq Bale (0.41 tons) / ac

Benefits		Costs
A. Revenues Increases		C. Revenue <i>Decreases</i>
Reservation Payment	\$2.50 /a	Crop Yield Losses (1" H ₂ 0) \$5.80 /a
Biomass Payment	\$2.07 /a	Storage Site Income loss \$0.36 /a
Nutrient Compensation	\$3.32 /a	
B. Cost <i>Decreases</i>		D. Cost Increases
		Harvest, handling, etc. \$4.21 /a
		Nutrient Replacement \$5.69 /a
Total Benefits: \$7.89 /a		Total Costs: \$16.06 /a

Net: (\$8.17) /acre

Irrigated Milo Stover Scenario #2

Preliminary results: 1.5 Lg Sq Bale (1.24 tons) / ac

Benefits		Costs
A. Revenues Increases		C. Revenue Decreases
Reservation Payment	\$2.50 /a	Crop Yield Losses (1" H ₂ O) \$5.80 /a
Biomass Payment	\$6.22 /a	Storage Site Income loss \$0.36 /a
Nutrient Compensation	\$9.95 /a	
B. Cost <i>Decreases</i>		D. Cost Increases
		Harvest, handling, etc. \$4.21 /a
		Nutrient Replacement \$11.38 /a
Total Benefits: \$18.67 /a		Total Costs: \$21.75 /a

Net: (\$3.07) /acre

A Continuing Process...

- Decision Model completed by June 30, 2009
- Team Effort
 - K-State Research and Extension Staff
 - Troy Dumler Ext. Ag Economist @ SW Kansas
 - Ron Madl Director of BIVAP @ K-State
 - Norm Klocke Irrigation Engineer @ SW Kansas
 - Deann Presley Soil & Environmental Agronomist
 - Michael Langemeier Agricultural Economist
 - Natural Resource Conservation Service (NRCS)
 - Oklahoma State University

Questions???

Comments???

Visit the AgManager Website for K-State Agricultural Economics Extension www.AgManager.info