

Identifying Risks, Challenges and Solutions

April 4-7, 2016 • Kansas City Marriott Downtown, Kansas City, MO

hosted by NIAA National Institute for Animal Agriculture

Understanding Incentives for Livestock Biosecurity Investments & Efforts Closing General Session Glynn Tonsor Dept. of Agricultural Economics, Kansas State University **April 6, 2016**

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2015-69004-23273. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Does Partial Biosecurity Reflect Producer Knowledge Gaps?

• Perhaps,

➢Ongoing education can help

Does Partial Biosecurity Reflect Producer Knowledge Gaps?

- Perhaps,
 - but we <u>must consider economic incentives</u>
 > effectiveness & practicality
 > private-public distinctions
 > absolute vs. relative value
 > producer's expectations
 - ➤role of globalization

Does Partial Biosecurity Reflect Producer Knowledge Gaps?

- Perhaps,
 - but we must consider economic incentives
 - >effectiveness & practicality
 - ➢ private-public distinctions
 - ➤absolute vs. relative value
 - ➢ producer's expectations
 - ➤ role of globalization

Bottom-line: lack of knowledge is likely NOT sole reason for partial implementation of recommended biosecurity measures

Perspective on Economics

 Science of decision-making and allocation of limited resources

Centers on trade-offs and incentives for action

Broader Perspective on Animal Health/Disease Risk

- Key biological processes underlie risk.
 - Clearly a role for epidemiologists, veterinarians, etc.

Broader Perspective on Animal Health/Disease Risk

- Key biological processes underlie risk.
 - Clearly a role for epidemiologists, veterinarians, etc.

Human activities also endogenously impact risk
 & ultimate impacts of adverse events

Effectiveness & Feasibility

 Why create something with low odds of adoption?

- How would investors on Shark Tank react?

Effectiveness & Feasibility

- Why create something with limited odds of adoption?
 - How would investors on Shark Tank react?

- Just because a biosecurity measure "works" doesn't mean it will be 100% implemented
 - Feasibility, effectiveness, & net econ. value are key
 - E.coli vaccines for fed cattle are prime example

Private-Public Considerations

- Private decision
 - Invest where MY benefits > MY costs
 - May <u>partially</u> capture impact on neighbors, broader industry, etc.
- Public decision
 - Take action so SOCIAL benefits > SOCIAL costs

Private-Public Considerations

- Private decision
 - Invest where MY benefits > MY costs
- Public decision
 - Take action so SOCIAL benefits > SOCIAL costs
- Consider ind. animal ID in beef cattle industry
 - Pendell et al. 2013 (Food Policy)
 - » Small + in exports (~S. Korea) offsets costs of full, national Age & Source Verification program
 - » Yet a segment of producers would be better w/o ASV & losing market access

Private-Public Considerations

- Private decision
 - Invest where MY benefits = MY costs
- Public decision
 - Take action so SOCIAL benefits = SOCIAL costs
- Consider ind. animal ID in beef cattle industry
 - Pendell et al. 2013 (*Food Policy*)
 - » Small + in exports (~S. Korea) offsets costs of ASV
 - » Segment of producers would be better w/o ASV & losing mkt access

What is socially optimal is not necessarily optimal for every individual!

Incentive Compatibility

- USDA APHIS HPAI Indemnity Claims
 - Proposed move to make payment eligibility tied to having a biosecurity plan in place

 Producers currently have limited incentive to fully & quickly share information externally

Absolute vs. Relative Assessment

• We often conduct benefit-cost assessments of single biosecurity measures in isolation.

- "If positive should implement"

- In reality, the <u>relative</u> merit ACROSS available biosecurity measures is key.
 - Consider case of 2 measures with returns on investment of 15% and 5%

Reference Points in Producer Decisions?

- What level of risk do producers expect and manage around?
 - If near 0%, we are frustrated by "irrational behavior" of partial biosecurity
 - If different threshold is used (e.g. 1 event/20 yrs),
 this reference point is central to producer decisions

Globalization's Role

• Expanding trade can increase:

Volume and Potential for adverse events

Economic impact when adverse event occurs

Globalization's Role

- Expanding trade can increase
 - Volume and Potential for adverse events
 - Economic impact when adverse event occurs

"9 billion in 2050" + U.S. Comparative Advantages + Growing role of trade =

interest and need to better understand economics of biosecurity efforts

Preliminary Expert Survey Findings

Relative Benefit-Costs Differences

	Industry Sectors	Benefits	Costs	Difference
Dairy	Retailers	21.0	9.1	11.9
	Processors	26.9	18.4	8.5
	Dairy Producers	52.1	72.6	-20.4
Beef	Retailers	16.6	5.6	11.0
	Processors	20.9	9.7	11.2
	Feedlot	28.0	30.8	-2.8
	Stocker/Backgrounder	16.3	22.3	-5.9
	CowCalf	18.1	31.6	-13.5
Swine	Retailers	12.2	2.6	9.5
	Processors	17.4	8.1	9.2
	Finishing	21.6	25.1	-3.5
	Nursery	14.9	23.6	-8.6
	Sow-Breeding	33.9	40.6	-6.6

N=86 (35 beef, 34 dairy, 17 swine) as of 4/1/16

More information available at:

This presentation will be available in PDF format at:

http://www.agmanager.info/about/contributors/individual/tonsor.asp

Glynn Tonsor Associate Professor Dept. of Agricultural Economics Kansas State University Email: gtonsor@ksu.edu Twitter: @TonsorGlynn

KANSAS STATE UNIVERSITY

Utilize a Wealth of Information Available at AgManager.info

About AgManager.info

AgManager.info website is a comprehensive source of information, analysis, and decision-making tools for agricultural producers, agribusinesses, and others. The site serves as a clearinghouse for applied outreach information emanating from the Department of Agricultural Economics at Kansas State University. It was created by combining departmental and faculty sites as well as creating new features exclusive to the AgManager.info site. The goal of this coordination is to improve the organization of web-based material and allow greater access for agricultural producers and other clientele.

KANSAS STATE UNIVERSITY

Receive Weekly Email Updates for AgManager.Info

Receive Weekly Email Updates for AgManager.info:

http://www.AgManager.info/Evaluation/Email.htm

KANSAS STATE UNIVERSITY