Perceived Perception Gaps between Adopters and Non-Adopters of Benefits and Costs of Conservation Practices

Jason Bergtold and Calder McCollum

2021 Risk and Profit Conference August 19, 2021 Manhattan, Kansas

Purpose and Objectives

To assess the perception gap between adopters and non-adopters on the benefits and costs for four intensive conservation practices in Kanas

Objectives

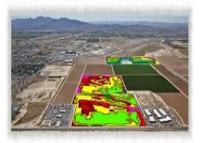
- 1. Assess the level of adoption of conservation practices for different crops in Kansas.
- 2. Assess farmer perceptions about the costs and benefits of adoption of conservation practices on-farm.
- 3. Determine if perception gaps between adopters and non-adopters exists for different conservation practices used in Kansas.

Motivation

- ➤ Adoption of conservation practices is heavily influenced by perceptions about the benefits and costs of the practice (Munguia and Llewellyn, 2020; Toskana et al., 2010).
- ➤ In interviews with farmers, Reimer et al. (2012) found that high levels of perceived relative advantage (e.g. lower costs, timesavings, returns), compatibility, and observed effects are the most significant indicators of conservation practice adoption.

Focus

In-field conservation practices


Continuous No-Till

Cover Crops

Conservation Crop Rotation

Variable Rate Technology

Continuous No-Till

- Consists in planting crops directly into the crop residue, which remains on the soil surface without disturbing the soil with tillage.
 - Disturbance is limited to nutrient injection and planting of crops.
- No-till across all the crops planted in a field.

Conservation Crop Rotation

- Implementation of a 3+ year crop rotation with three or more crop types. (Could also include a 2year rotation with double cropping.)
- The rotation should include a combination of high residue crops, grasses and/or legumes.

Cover Crops

- Single or multiple cover crop species planted between regular cash crops to protect the soil and improve soil organic matter.
- Cover crops species :
 - Legumes: winter peas, hairy vetch, cowpeas, crimson clover, sunn hemp, etc.
 - Cereal: rye, oats, millet, etc.
 - Grass: sorghum-sudangrass hybrid, etc.
 - Mixtures
- Variable costs of planting and managing cover crops in Kansas range from \$40/acre to \$100/acre.

Variable-Rate Application of Inputs

- Varying rates of inputs (e.g. fertilizer, lime, herbicides) within a field based on field requirements (e.g. changes in soil, high/low yielding areas).
 - Map-based
 - Sensor-based

Data Collection

Conservation Workshops

- Workshops were conducted in 2013/2014 in 12 locations around Kansas to talk with farmers about conservation practices on-farm and collect farm data.
- Farmers answered surveys about conservation practice adoption and their perceptions about these practices.
- Attendees were compensated for their time and travel.

Survey Questions

No-till: Please indicate if you have used no-till in producing the following crops and indicate whether you have perceived any yield increase, yield decrease or no change in yields. If you do not grow one of the crops listed, please leave that row blank.

Crop	Have	Have you adopted No-till in this crop?		If Yes, what was the yield impact?			
Corn	3035	□Yes¹	□No³	3036	□Increase ¹	□Decrease ²	□No change ³
Soybean	3037	$\Box Yes^1$	$\square No^3$	3038	\square Increase ¹	$\square Decrease^2$	$\square No \ change^3$
Wheat	3039	$\Box Yes^1$	$\square No^3$	3040	\square Increase ¹	$\square Decrease^2$	□No change ³
Sorghum	3041	$\Box Yes^1$	$\square No^3$	3042	\square Increase ¹	$\square Decrease^2$	□No change ³
Other (Specify):	3043 3043A	□Yes¹	$\square No^3$	3044	□Increase ¹	□Decrease ²	□No change ³

Asked this type of question for all conservation practices examined. If a farmer did not grow a specified crop, then they did not report information for that practice for this question.

Survey Questions

For each practice, indicate whether you have observed changes for each category provided to be lower, higher or if they did not change after adoption of the specified practice. If you have not adopted each of these practices, indicate whether you believe these values would be lower, higher or would not change if you were to adopt them.

Co	Continuous No-Till				
		Lower ¹	No Change ²	Higher ³	
a.	Weed pressures ₃₀₇₅				
a.	Insect and disease pressures 3076				
a.	Soil erosion ₃₀₇₇				
a.	Soil fertility ₃₀₇₈				
a.	Management intensity 3079				
a.	Time spent managing the crop 3080				
a.	Off-site environmental impact 3081				
a.	Crop yields ₃₀₈₂				
a.	Production costs ₃₀₈₃				
a.	Net returns ₃₀₈₄				

Asked this type of question for all conservation practices examined. All participants were asked to answer these questions.

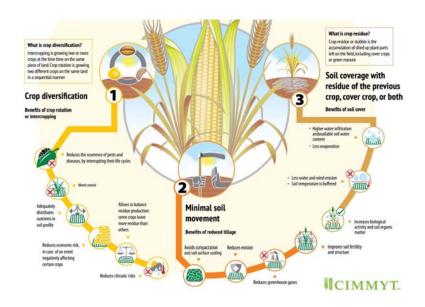
Workshops

Table 1: Workshop locations and attendees

Worl	shop location	1	Attendees
1	Salina		39
2	Great Bend		32
3	Colby		19
4	Dodge City		14
5	Wellington		21
6	Hiawatha		13
7	Topeka		25
8	Manhattan		14
9	Parsons		31
10	Pratt		10
11	Garnett		16
12	Hays		14
		Total	248

- Sample was obtained from the Kansas Farm Management Association (KFMA)
- Timing: December 2013 to March 2014
- Many participants are already involved with conservation on their farm.
- Recall, we are interested in the intensification of conservation on-farm. Looking at what it would take to do more conservation.

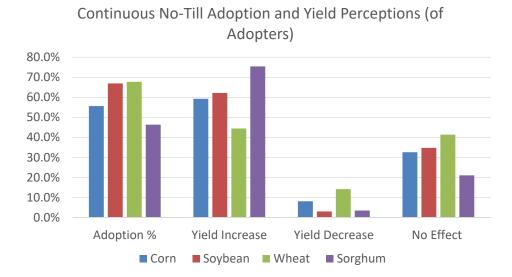
Farm Characteristics


Table 2. Average farm characteristics

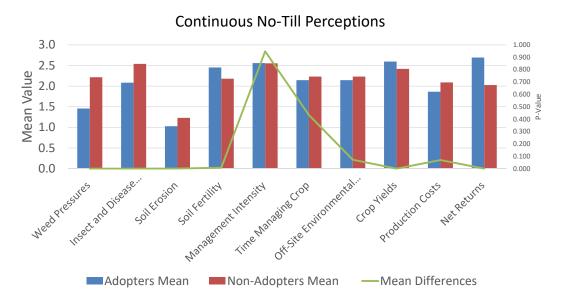
Variable	N	Mean	Min	Max	Census of Agriculture
Age	248	57.13	20	90	56.2 years
Average					
farm size	247	2,460	40	14,875	981 acres
Average					
sales value	242	6.2 ^b	1	9	\$ 438,020

^a Source: National Agricultural Statistics Service, USDA (2007) (> \$50K in Sales)

^b Mean sales of 6.20 corresponds to the sales category of \$400,000 to \$599,999


Findings

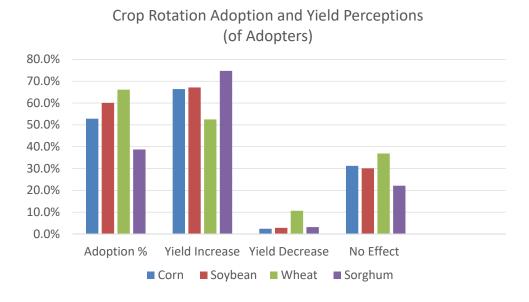
Continuous No-Till



Continuous No-Tillage Adoption

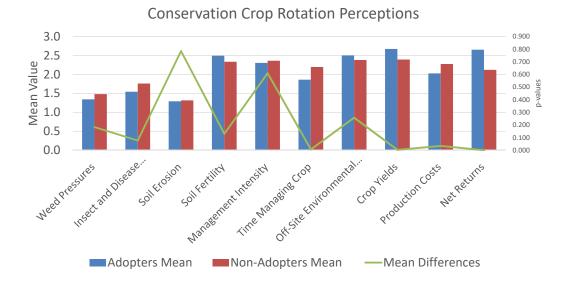
- ➤ Use of no-tillage in Kansas is crop dependent (Canales et al., 2018)
- Adopters find on average that continuous no-tillage has no adverse effect on yields or increases crop yields of primary crops grown in Kansas.

Continuous No-Tillage Perceptions



Significant perception gaps exist with respect to **weed pressure**, **insect and disease pressure**, **soil erosion**, **soil fertility**, off-site environmental impacts, **crop yields**, production costs, and **net returns**.

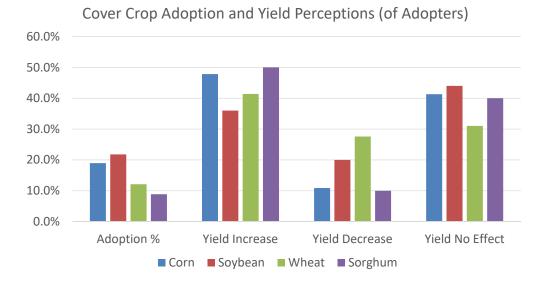
Conservation Crop Rotation



Conservation Crop Rotation Adoption

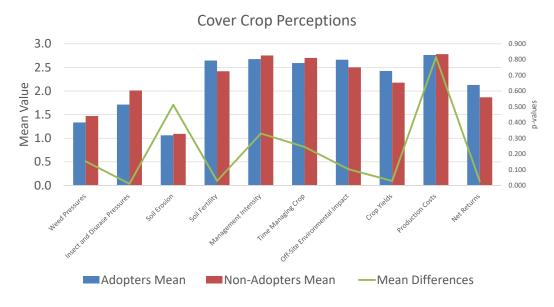
Adopters find on average that conservation crop rotations have no adverse effect on yields or increases crop yields of primary crops grown in Kansas.

Conservation Crop Rotation Perceptions

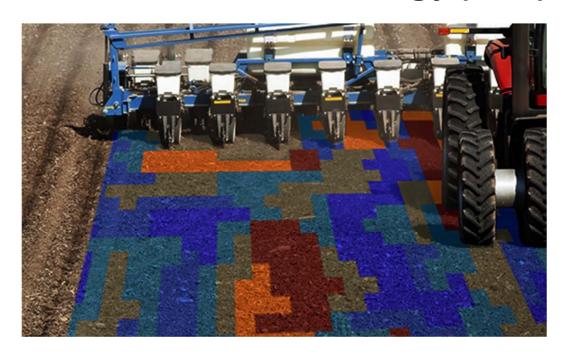


Significant perception gaps exist with respect to insect and disease pressure, time managing crop, crop yields, and net returns.

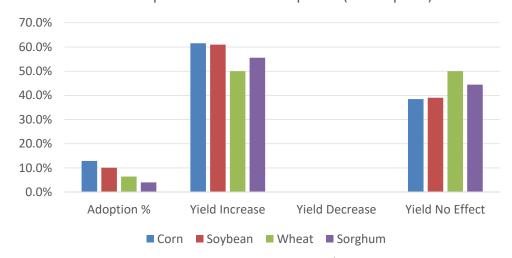
Cover Crops



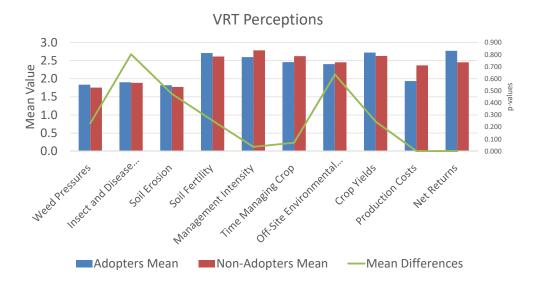
Cover Crop Adoption

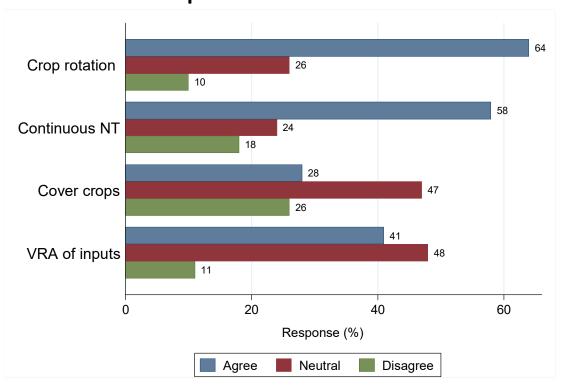

- Cover crop adoption is still low across much of the Great Plains (Bergtold et. al., 2019).
- The impact on crop yields from use of cover crops is mixed. Much of this may be due to the type of cover crop adopted and management of the cover crop.

Cover Crop Perceptions


Significant perception gaps exist with respect to **insect and disease pressure**, soil fertility, off-site environmental impacts, crop yields, and net returns.

Variable Rate Technology (VRT)


Variable Rate Technology Adoption


- Much VRT application is done as custom by operators/businesses who own the equipment. Availability of VRT custom services has been mixed and spotty across Kansas over time.
- Adopters find on average that VRT has no adverse effect on yields or increases crop yields of primary crops grown in Kansas.

Variable Rate Technology Perceptions

Significant perception gaps exist with respect to time managing crop, **production costs**, **net returns**.

Do these practices reduce risk?

Discussion

- There exists significant differences in perceptions about conservation practices between adopters and nonadopters.
- On average, non-adopters perceived lower relative benefits (e.g. crop yield and net return) and higher relative costs for the conservation practices examined.
- Being able to translate the actual benefits, costs and risks perceived by adopters to non-adopters may improve adoption and uptake of these practices, improving conservation on the landscape.

Discussion

- ➢ Gaps can be reduced through mentoring programs (connection to farmers), farmer led field days, better technical assistance in conservation programs, and further education (Arbuckle and Roesch-McNally, 2015; Baumgart et al., 2012).
- Production costs, impact on crop yields, economic returns, compatibility, management effort, uncertainty, and risk management have all been identified as barriers to adopting conservation practices. Better and/or more applicable information is needed on these aspects of the conservation practices examined (Ranjan et al., 2019)

Questions or Comments?