

2016 Risk and Profit Conference Breakout Session Presenters

"Knowledge for Life"

18. Pasture Rainfall Insurance and Associated Issues

Monte Vandeveer

<montev@ksu.edu>

Monte Vandeveer joined the KSU Extension Farm Management team in February 2016 as the Southwest Area extension agricultural economist, based in Garden City. He grew up on a farm in south-central Kansas with wheat and cow-calf operations. He received B.S. and M.S. degrees in agricultural economics from Kansas State University and a Ph.D. in ag economics from Purdue University. Besides working for K-State Research and Extension, he also has experience working with the Economic Research Service, (USDA), the University of Nebraska-Lincoln's Extension Service, and volunteer service in Vietnam. He has a special interest in risk management, particularly crop insurance.

Abstract/Summary

Kansas has a pilot program for insuring pasture and perennial forage production that is backed by USDA's Risk Management Agency, just like traditional multi-peril crop insurance. This insurance product – Pasture, Rangeland, and Forage coverage, or PRF – covers only one peril, however: low precipitation. Learn how this area-based system works and whether it might be a suitable risk management tool for your operation.

Pasture, Rangeland, & Forage (PRF) Insurance: Rainfall Insurance for Livestock and Forage Producers

KSU Risk and Profit Conference Manhattan, KS August 18-19, 2016

Dr. Monte Vandeveer
KSU Extension Agricultural Economist, SW Area

KANSAS STATE

Insurance for pastures and perennial forage production?

- Pasture, Rangeland, and Forage (PRF) insurance available from RMA
 - What are pros and cons from a producer's perspective?
- Kansas has huge area devoted to grazing lands and perennial forages
- Drought is significant: major event 1 year in 5?

KANSAS STATE

How much land are we talking about?

15.5 million acres of permanent pasture

308,000 acres of woodland pastures

2.2 million acres of alfalfa, tame & wild hay

18.0 million acres eligible for PRF

Source: 2012 Census of Agriculture

KANSAS STATE

How much is 18 million acres? How many are insured?

Crop	Acres planted In 2015	Acres insured In 2015	% insured In 2015	
Wheat	8.8 million	8.4 million	95	
Grain sorghum	3.0 million	2.7 million	88	
Corn	4.1 million	3.6 million	95	
Soybeans	3.8 million	3.2 million	84	
Total BIG 4 crops	19.7 million	17.9 million	91	
Pasture & perennial forages	18.0 million	974,412	5.4	

Source: Risk Management Agency, USDA

KANSAS STATE

PRF Insurance: background

- Program of Risk Management Agency (USDA)
 - Started in 2007, available in Kansas since 2009
 - Sold by private insurance agents
 - Significant premium subsidy: 51-59% paid by USDA
 - Can insure grazing land or perennial forages
 - Area-based: uses a grid system
 - Single peril: only insures precipitation

Kansas State

PRF Insurance: more background

- Guarantee from 70% to 90% of normal rainfall
- · Uses dollar coverage per acre
- · Policy runs January to December
- Pick time periods you want to insure
 - at least two 2-month intervals and allocate \$ coverage
 - maximum of 60% of \$ coverage for any interval

PRF uses a rainfall index

- · Convert rainfall amounts to an index:
 - Simply express actual rainfall amount as a percent of longterm normal rainfall

Example:

- · long term normal rainfall for two-month period is 6 inches
- actual rainfall is 4.5 inches for that time
- your index is 75 (= 4.5/6 x 100)
- If actual rainfall index falls below guaranteed level, the insurance pays an indemnity

KANSAS STATE

Rainfall insurance? Not a new idea...

- Use <u>rainfall</u> as a <u>proxy</u> for crop output considered in some countries since 1980's
- Underlying issues:
 - Scant or unreliable yield records
 - Better data for rainfall histories for actuarial work
 - Difficulty in verifying yields
 - · Concern over concealed output
 - Yields not usually measured (e.g., grazing)

KANSAS STATE

How is grid rainfall value calculated?

- Measure precipitation at NOAA weather stations
- Rainfall at <u>four nearest reporting stations</u> to center of grid are used to calculate the rainfall index
 - Weighted average of 4 stations; closest stations get greater weights
 - · Coverage is area-based
 - Index is <u>not for an individual farm or ranch</u> or specific weather station

KANSAS STATE

But why insure rainfall?

- <u>PROBLEM</u>: how can we insure forage production when we usually don't measure pasture / forage output?
- <u>ANSWER</u>: use another measure as a proxy for forage production
 - · Precipitation: easy to measure, can't be concealed
 - Hopefully will closely reflect forage production

KANSAS STATE

Area-based coverage: find your grid

- 0.25 degrees longitude x 0.25 degrees latitude
- 17 miles N-to-S,
 13 miles E-to-W
- If your land lies in 2 adjacent grids, you can insure it in one or the other, or split it into both
- Only one composite rainfall value for entire grid

KANSAS STATE

Weighted by distance from grid center

 Weight based on distance

 More distant stations get smaller weight

 Your location in the grid doesn't matter

Where are the reporting stations?

KANSAS STATE

"Know the gaps"

- Rainfall Proxy Gap: rainfall doesn't precisely correspond to forage output
- Distance/Basis Gap: area (grid) rainfall index may not closely match one's own rainfall experience
- Perennial Production Gap: what happens this year may affect next year's production

KANSAS STATE

EXAMPLE: Riley County Diversified Farm/Ranch

- 2,500 Acres Rangeland/Pasture
- 250 Acres Alfalfa/Grass Hay
- Look at 1980-2015 (36 years)
- Use the RMA Decision Support Tool

KANSAS STATE

Rainfall insurance has some issues...

- · Other perils aren't insured
 - Fire
- Hail
- Heat
- Insects
- Disease
- Plant vigor
- Rainfall is still only a proxy measure for forage production
 - 3 important "gaps"

KANSAS STATE

Actual PRF insurance process

- · Producers identify:
 - intended use (grazing or haying)
 - · acres to insure, grid location
 - rainfall guarantee level (70% to 90%)
 - dollars of protection (with Productivity Factor)
 - time periods to insure
 - · allocation of coverage across time periods
- Coverage must be purchased by November 15.

http://maps.agforceusa.com/prf/ri

KANSAS STATE

Intended Use:

- haying or grazing

Coverage Level:

- 90% to 70%

Productivity Factor:

- 60% to 150%

Insurable interest:

- 100% = full ownership

KANSAS STATE

County Base Value	\$39.00
Dollar Amount of Protection	\$52.65
Total Insured Acres	2,500
Total Policy Protection	\$131,625
Subsidy Level	51.0%
Maximum Percent of Value per Index Interval	60.0%

COUNTY BASE VALUE =

base \$ value of production per acre; set by RMA

DOLLAR AMOUNT of PROTECTION =

County Base Value x Productivity Factor % x Guarantee Level %

TOTAL POLICY PROTECTION =

\$ Amount of Protection x Total Insured Acres

KANSAS STATE

Index Interval	Percent of Value (%)			
Jan-Feb				
Feb-Mar				
Mar-Apr				
Apr-May	N/A			
May-Jun	60			
Jun-Jul	N/A			
Jul-Aug	40			
Aug-Sep	N/A			
Sep-Oct				
Oct-Nov				
Nov-Dec				

INDEX INTERVALS

- Time periods for which you insure rainfall
- Must choose at least two intervals
- Must allocate % of coverage to each (max 60%, min 10%)

CHOOSE PERIODS WHICH ARE KEY FOR PRODUCTION

Index Interval	Percent of Value (%	Policy b) Protection per Unit	Premium Rate per \$100	Total Premium	Premium Subsidy	Producer Premium
Jan-Feb		\$0	22.77	\$0	\$0	\$0
Feb-Mar		\$0	18.25	\$0	\$0	\$0
Mar-Apr		\$0	13.23	\$0	\$0	\$0
Apr-May	N/A	\$0	13.49	\$0	\$0	\$0
May-Jun	60	\$78,975	12.73	\$10,054	\$5,127	\$4,927
Jun-Jul	N/A	\$0	16.59	\$0	\$0	\$0
Jul-Aug	40	\$52,650	16.59	\$8,735	\$4,455	\$4,280
Aug-Sep	N/A	\$0	15.59	\$0	\$0	\$0
Sep-Oct		\$0	18.63	\$0	\$0	\$0
Oct-Nov		\$0	17.48	\$0	\$0	\$0
Nov-Dec		\$0	24.51	\$0	\$0	\$0
Per Acre	N/A	N/A	N/A	\$7.52	\$3.83	\$3.68
Policy Total	2,500	\$131,625	N/A	\$18,788	\$9,582	\$9,206

KANSAS STATE

Insuring Perennial Forages

- · Perennial hay crops can be insured
- · Winter feed is critical to many operations
- · PRF insurance helps compensate for loss

KANSAS STATE

Index Interval	Percent of Value (%)	Policy) Protection per Unit	Premium Rate per \$100	Total Premium	Premium Subsidy	Producer Premium	2012 RESULTS	
							Actual Index Value	Indemnity
Jan-Feb		\$0	22.77	\$0	\$0	\$0	118.4	\$0
Feb-Mar		\$0	18.25	\$0	\$0	\$0	140.1	\$0
Mar-Apr		\$0	13.23	\$0	\$0	\$0	95.3	\$0
Apr-May	N/A	\$0	13.49	\$0	\$0	\$0	51.6	\$0
May-Jun	50	\$28,013	12.73	\$3,566	\$1,819	\$1,747	54.3	\$11,112
Jun-Jul	N/A	\$0	16.59	\$0	\$0	\$0	52.2	\$0
Jul-Aug	50	\$28,013	16.59	\$4,647	\$2,370	\$2,277	78.1	\$3,704
Aug-Sep	N/A	\$0	15.59	\$0	\$0	\$0	107.4	\$0
Sep-Oct		\$0	18.63	\$0	\$0	\$0	51.6	\$0
Oct-Nov		\$0	17.48	\$0	\$0	\$0	34.9	\$0
Nov-Dec		\$0	24.51	\$0	\$0	\$0	45.8	\$0
Per Acre	N/A	N/A	N/A	\$32.85	\$16.76	\$16.10	N/A	\$59.26
Policy Total	250	\$56,026	N/A	\$8,213	\$4,189	\$4,024	N/A	\$14,816

KANSAS STATE

Premiums & Indemnities for 2012

Total Premiums \$13,230

Grazing \$9,206 Haying \$4,024

Total Indemnities \$53,105

Grazing \$38,289 Haying \$14,816

• Net of \$39,875

Experience over 1980-2015

90% Coverage, 150% Productivity

- Paid 21 out of 36 years
- Annual Premium = \$13,230
- Average Annual Indemnity = \$19,167
- \$1.45 received for every \$1 spent

KANSAS STATE

Experience over 1980-2015

70% Coverage, 150% Productivity

- Paid 14 out of 36 years
- Annual Premium = \$4,227
- Average Annual Indemnity = \$8,077
- \$1.91 received for every \$1 spent

KANSAS STATE

Example: Barta Brothers Ranch

- Rock County, NE
 - Just west of Hwy 183, north-central Nebraska
 - Annual average rainfall of 22 inches
 - Mostly warm-season grasses
- Operated by University of Nebraska
- Forage yield data from 1999 to 2015

KANSAS STATE

Experience over 1980-2015

80% Coverage, 150% Productivity

- Paid 15 out of 36 years
- Annual Premium = \$7,932
- Average Annual Indemnity = \$12,822
- \$1.62 received for every \$1 spent

KANSAS STATE

We are now studying...

- Which time periods should be insured to provide the best risk reduction?
- How should coverage be allocated across the insured time intervals?
- How would PRF change our risk and returns?

KANSAS STATE

Forage production, 1999-2015

Add PRF insurance...

- 2016 parameters:
 - \$41.00 /acre County Base Value
 - 150% Productivity Factor
 - 90% Coverage level
 - \$55.35 /acre Dollar Amount of Protection
 - 51% Premium Subsidy

KANSAS STATE

Comparing risk-return trade-offs

Expected Return →

All PRF index intervals at 100% coverage

KANSAS STATE

Some observations...

- Buy coverage in growing season months to reduce risk
 - Best candidates to ensure payments in drought years
 - Tend to have less variability in payments
- · Higher indemnity payments in winter months
 - Better chance of near-zero precipitation and hence larger indemnities; premiums are also higher
 - Weakest correlation between precipitation and forage yield
 - Tends to raise variability of returns; may get no protection in a drought year and big payoff in a good year

KANSAS STATE

PRF: What to evaluate?

- Use the Decision Support Tool to evaluate your options
 - How well does your production track with your PRF indices?
 - Insurance performance in drought years?
 - Which time periods to insure?
 - How much coverage to allocate to each insured period?
 - · Levels of coverage, productivity factor?
 - Premium costs, indemnity payments?
 - Long run participation may work best....
- November 15 is sales deadline

KANSAS STATE

Selected PRF allocations across multiple intervals

KANSAS STATE

MORE observations...

- Insurance increases expected returns
 - Effect of premium subsidy over many years
 - · Higher Productivity Factor magnifies this effect
- · Insurance can increase income variability
 - Higher <u>Dollar Protection Per Acre</u> makes for <u>bigger premiums and</u> indemnities
 - Also results from weaker correlation between rainfall index and forage output for some months
- Points to portfolio perspective for selecting intervals and allocating coverage

KANSAS STATE

Questions? Comments? Thank you!

Dr. Monte Vandeveer

KSU Extension Agricultural Economist Email: montev@ksu.edu

Phone: 620-275-9164

K-State Research and Extension is a statewide network of educators sharing unbiased, research-based information and expertise on issues important to Kansas. K-State Research and Extension is an equal opportunity provider and employer.