

Current precision ag utilization

- 16% of service providers use UAVs
- Most common (72%) soil grid size = 2.5 ac
 - Smaller grid sizes used only 13% of time
- 20% use telematics in 2015
 - Up from 15% in 2013 and 7% in 2011

What are Telematics?

 The branch of information technology that deals with the long-distance transmission of computerized information.

What Comes to Mind When You Think of Telematics and Insurance?

Telematics in Agriculture

Ag Companies Involved in Telematics

Company	System	Method	Vehicle Tracking	Vehicle Alerts	Operation Data Transfer	Data File Transfer
AGCO	AgCommand	Cellular	Yes	Yes	Yes	No
CLAAS	CLAAS Telematics		Yes		Yes	Yes
Raven	Slingshot	Cellular	Yes	No	No	Yes
John Deere	JDLink	Cellular, Satellite	Yes	Yes	Yes	No
Trimble	Connected Farm	Cellular, Radio	Yes	Yes	Yes	Yes
CaseIH	AFS Connect	Cellular	Yes	Yes	Yes	Yes

Mention or omission does not imply endorsement

Big Data vs Open Data

- Big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate. Challenges include analysis, capture, data curation, search, sharing, storage, transfer, visualization, and information privacy.
- the idea that some <u>data</u> should be freely available to everyone to use and republish as they wish, without restrictions from <u>copyright</u>, <u>patents</u> or other mechanisms of control

Ag Data Analysis Service Offerings

Managing Farm-Level Data to Assist Customers in Decision Making

From one-field-at-a-time to Big Data

- Data maybe considered
 - "non-rival"
 - "Excludable" and/or "non-excludable"
- Copies of digital data identical to original
- Value lies in its use, not in the possession
 - Data tombs are common (and worthless)
 - 'one who controls the data enjoys the value'

Community Data Analysis

- "Network effects" and Metcalfe's Law
- Society's Value of Farmer Participating in Community is Greater than Value to the Farmer
 - secondary use value > primary use

Value of Big Data via Network

Value of secondary use > Value of primary use

Data	Primary Use	Secondary Use
Yield monitor data	Documenting yields On-farm trials	GxExM analyses
Soil sample data	Fertilizer decisions	Regional compliance
Scouting	Spray decisions	Regional analytics

Valuation of Precision Ag Data

- Consider the farm-level value of 'lost data'
 - Pirate holding data for ransom
 - Willingness-to-pay for data security
- Court system likely decide value
 - rather than free market
- Value much greater to aggregator

Big Data in Ag is "Mature" when:

- Flow of data controlled by only a few entities
- Secondary uses recognized as valuable
 - If yield monitor malfunctions, harvest stops for repair
 - Combine operators trained to collect data
- Farmland values and rents affected by
 - presence of data
 - broadband connectivity

FCC Broadband Definition: 2010 to 2014

Compare Search term	18 🔻					
data security Search term	data privacy Search term	+Add term				
Interest over time	٢				News headlines	Forecast
	Δ					
	MM	Man L		, н	DC	B A
				\sim	m	
	minh	~~~~~	~~~~~	~~~	G F E	~~~~
Average	2005	2007 200	19 20.11	1	2013	2015

Source: https://www.google.com/trends/

How will crop insurance make use of Big Data?

 "90% of the data in the world today has been created in the last two years alone" (<u>IBM, 2012</u>).

Implications of Telematics on the Crop Insurance Industry

- Difficult to monitor farmers' activities in relation to crop insurance guidelines
- Possible use of telematics
 - Document planting and harvesting dates
 - Accurately track harvest data in real-time
 - Track equipment time-and-motion data

Acknowledgements

Dr. Shannon L. Ferrell Associate Professor, Agricultural Law Dept. of Agricultural Economics Oklahoma State University

Dr. Aleksan Shanoyan Assistant Professor Department of Agricultural Economics Kansas State University

Terry Griffin, Ph.D. Cropping Systems Economist Department of Agricultural Economics Kansas State University Ph. 501-249-6360 twgriffin@ksu.edu

R. Brent Young, Ph.D. Agriculture & Business Management Specialist CSU Extension Ph. 970.522.7207 <u>brent.young@colostate.edu</u>

Extension