What does pre-planting soil moisture tell us about final corn yields?

Micah Cameron-Harp, Parker Vulgamore, Jennifer Ifft, and Jesse Tack

Risk and Profit Conference August 21 & 22, 2025

Daily Soil Moisture

January 1st to March 15th, 2021

Data source: NASA-USDA Enhanced SMAP

KANSAS STATE

Daily Soil Moisture

January 1st to March 15th, 2022

Data source: NASA-USDA Enhanced SMAP

KANSAS STATE

Are decisions made based on early season soil moisture information supported by measurable impacts on corn yields?

Data Sources

Yield Data: USDA Risk Management Agency (1990-2022)

Precise county yield records Ability to control for irrigation status

Soil Moisture Data: NASA SPORT-LIS (1km² daily measurements)

Planting dates: Deines et al. (2023) estimate county-level dates

Methods: Scaling Soil Moisture Data to the County Level Create crop masks Step 1 • Used USDA NASS CDL (2002-2021)

- Kept grid cells that grew corn, wheat, or soybeans in ≥ 50% years
- · Output: binary map of "consistently cropped" land

Step 2

Apply to soil moisture

- Converted volumetric SM to RSM
- Multiplied by crop mask → keeps only relevant cropland pixels

Step 3

Aggregate to counties

- Used spatially-weighted median to account for partial grid cell overlap w/ counties
- Example: grid cell 50% in county = 50% weight

Relative Soil Moisture (RSM) Data

 $Relative \ soil \ moisture = \frac{Volumetric \ soil \ moisture \ - \ wilting \ point}{Saturation \ - \ wilting \ point}$

- Interpretation:
 - 0 = wilting point
 - 1 = saturation
- Stress thresholds:
 - Below 0.2: drought conditions
 - Above 0.8: excess moisture stress

Methodology: Non-Parametric Soil Moisture Exposure Model

Specifying Exposure Bins

Why Bin Selection Matters:

- Too many bins/regressors may cause overfitting (Schwarz, 1978).
- Too few bins may overlook important nonlinear effects.

Bin Definition and Calculation:

• Grouped into **100 bins**, each representing a 1% increment of Relative Soil Moisture (RSM).

Data-Driven Bin Selection Process:

• K-fold cross validation procedure.

"Early Season" Definition

- Use dates from Deines et al. (2023).
- 30 days prior to the date when 10% of the corn crop is planted.

Regression Model Specification

$$\ln y_{it} = \sum_{k} \beta_k \phi_{k,it} + z_{it} \delta + c_i + \varepsilon_{it}$$

Where:

 $ln y_{it}$: natural logarithm of yield for county i in year t

 $m{\phi}_{k,it}$: number of days county i in year t was exposed to relative soil moisture within bin

 $(oldsymbol{eta}_k)$: marginal impact of one additional day of exposure to relative soil moisture in bin k

 \mathbf{z}_{it} : control variables, such as a quadratic time trend (t and t^2) to account for technological change.

 (c_i) : county fixed-effects to control for unobserved heterogeneity

Finally, we expect moisture conditions to be correlated in adjacent counties, so we allow the error terms (ε_{it}) to be spatially correlated using Conley standard errors (Conley 1999).

Results: National Model

What Do the Coefficients Mean?

 Each coefficient represents the effect of one additional day spent within a specific soil moisture bin.

Overall Insight:

- Exposure to very low soil moisture (1–15%) reduces yields.
 - An additional day reduces yield by 1%.
- Typical, intermediate levels increase yields (16-85%).
- Evidence that high soil moisture levels may be detrimental.

Results: National Model

		Standard			
Variable	Estimate	Error	t Value	p Value	Significance
SM 1-15%	-0.0088	0.0075	-1.1746	0.240	
SM 16-35%	0.0100	0.0045	2.2111	0.027	*
SM 36-50%	0.0196	0.0046	4.2949	<0.001	***
SM 51-85%	0.0190	0.0046	4.1532	< 0.001	***
SM 86-100%	0.0018	0.0055	0.3248	0.745	
time	0.0097	0.0015	6.2339	< 0.001	***
time ²	0.0007	0.0001	11.4042	< 0.001	***
Observations	21495				
Adj. R-					
squared	0.5535				
Standard-					
errors	Conley (50km)				
Fixed effects	County: 0				
RMSE	0.37566				

KANSAS STATE

Key Findings: Spatial Heterogeneity

- USDA Economic Research Service (ERS) Farm Resource Regions
 - Robustness checks

- Effects vary significantly across regions:
 - High rainfall areas benefit from drier early season conditions
 - Drought-prone areas suffer from dry conditions

Summary and Contributions

Key Findings:

- Strong evidence of a nonlinear relationship between early season soil moisture and yield outcomes.
- Clear indication of regional heterogeneity
- Demonstrated method's effectiveness in capturing critical moisture thresholds without imposing restrictive assumptions.

So What?

- As more data becomes available, we can better predict differences between local and national production.
- Accurate models facilitate better marketing and planting decisions going forward.

Thank you!

mcameronharp@ksu.edu

mcameronharp.com

