

Animal Health Economics

Jada M. Thompson, PhD Kansas State University <u>jmthomp@ksu.edu</u>

November 29 - December 1 Tuskegee University School of Veterinary Medicine

KANSAS STATE Department of Agricultural Economics

Outline

- Introduction
- Economics to Consider
- Animal Production and Trade
- Empirical Research Examples
- Decision Optimization
- Final Discussion

Animal disease can be an...

- Animal health problem
- Human health problem
- Production problem
- Economic problem

KANSAS STATE Department of Agricultural Economics

Infectious Animal Diseases

- Almost 60 percent of known human pathogens are of animal origin (Woolhouse and Gaunt, 2007)
- On average, a new disease has emerged or re-emerged each year over the past several decades with 75 percent of these being zoonotic (King, 2004)
- Between 1940 and 2004, found that of 60 percent of EIDs in the United States were zoonotic, with 72 percent originating in wildlife (Jones et al., 2008)

Infectious Diseases

- Increasing disease prevalence driven by:
 - Agricultural and food systems
 - Spatial livestock production, mixed biosecurity, trade
 - Ecosystems
 - Land use and climate change
 - Human living environment
 - Population, standard of living, travel

Source: Rushton, 2012

Economic-Health Tradeoff

- As veterinarians, your prerogative is animal health
 - If there is a control measure, it should be used
- Producers decides optimal control based on:
 - Time
 - Cost
 - Effectiveness of treatment

Economic Assessments

Source: Pendell et al. (2014)

UNIVERS

KANSAS STATE Department of Agricultural Economics

ECONOMICS OF ANIMAL AGRICULTURE

KANSAS STATE UNIVERSITY Department of Agricultural Economics

What is Economics?

- Simplest definition: The study of the allocation of scare resources
- Animal health economics is concerned with allocation of resources to:
 - Inform disease prevention measures
 - Combat disease
 - Minimize disease impacts

Valuing Direct Costs

- Direct Costs: Costs directly accounted to the payer
 - Drug and vaccine costs
 - Labor costs
 - Disease control measure costs

Valuing Indirect Costs

- Indirect Costs: Costs not directly accounted to the payer
 - Supply chain impacts
 - Consumer price changes
 - Trade changes

– Impacts on animal and human health

Who Pays These Costs?

- Producers
- Government: Local, State, and Federal
- Domestic Consumers
- International Consumers

Share of U.S. household consumer expenditures by major categories, 2014

Note: "Other" includes personal care products, tobacco, and miscellaneous expenditures. Source: USDA, Economic Research Service using data from U.S. Bureau of Labor Statistics, Consumer Expenditure Survey, 2014.

ANIMAL PRODUCTION AND TRADE

Proportion of Global Meat Production

Source: Worldmapper, 2016. http://www.worldmapper.org/display.php?selected=125

Proportion of Global Meat Consumption

Source: Worldmapper, 2016. http://www.worldmapper.org/display.php?selected=125

Global Annual Per Capita Meat Consumption 40 Annual Per Capita Consumption Kg/person PIG — POULTRY — SHEEP — Total Meat BEEF 35 30 25 20 15 10 5 Ω

KANSOS STATE UNIVERSITY BOOMTON OF AGRICUltural 2020 2015 Source: OECD Per Capita Meat Consumption, 2016

18

2018

U.S. Animal Production

- United States a net exporter
- Value of exports often exceed \$100 billion per year
- Member of World Trade Organization (WTO)
 - Part of the sanitary and phytosanitary (SPS) agreement
 - Trade measures encouraged to use international standards
 - Further reading: Zepeda et al. (2005)

Market value of livestock, poultry, and their products sold in 2012

1 dot = \$20 million

Source: USDA, Economic Research Service using data from USDA, National Agricultural Statistics Service, 2012 Census of Agriculture.

U.S. Red Meat and Poultry Utilization

Source: USDA- World Agriculture Supply and Demand Estimates, 2016

EMPIRICAL EXAMPLES OF HIGHLY PATHOGENIC AVIAN INFLUENZA

KANSAS STATE UNIVERSITY Department of Agricultural Economics

Poultry Business Continuity

- Effect of business continuity on U.S. market
- Integrated epidemiological and economic model
- Model effects of a hypothetical highly pathogenic avian influenza (HPAI) outbreak

Business Continuity: Control Areas

Source: United States Department of Agriculture: Animal and Plant Health Inspection Service. *Highly Pathogenic Avian Influenza Response Plan, The Red Book*. September 2012

Methodology Overview

 $\frac{KANSAS STATE}{U N I V E R S I T Y} | Department of Agricultural Economics$

Results

HPAI Disease Impacts in Minnesota (% Changes)

Results: Welfare

Welfare Impacts of HPAI Outbreak for Minnesota ('000)

Total Producer Surplus Change

Consumer Surplus Change

UNI

Highly Pathogenic Avian Influenza

KANSAS STATE Department of Agricultural Economics

Poultry Trade Example

- 2014-2015 HPAI in U.S. poultry
- Changes in trade composition and quantity
- Regionalized importer trade response
 - Disease status had to be established for all regions
 - Control program to be in places
 - National and state level coordination

Results

	Aggregated Products	Aggregated Products
	Aggregated Ban	Types of Bans
Aggregate Poultry Trade Ban	-99.37***	
	(0.13)	
National Poultry Trade Ban		-100.00***
		(0.16)
State Poultry Trade Ban		-34.95***
		(0.13)
Country Poultry Trade Ban		16.18
		(0.15)
Observations	13,380	13,380
Number of ID	345	345
Standard arrors in parentheses, *** n <0.01 ** n <0.0	5 * n = 0 1	

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1

DECISION OPTIMIZATION

KANSAS STATE UNIVERSITY Department of Agricultural Economics

Economic Concepts in Decision Making

- Opportunity Costs
 - The forgone value of the choice(s) not taken
- Marginal Benefits/Costs
 - Benefits/costs associated with an additional unit of activity or good
- Understanding Value of Money
 - Discounting future revenue/costs to present day worth

Reactive vs. Proactive Approaches

Net Present Value (NPV)

• Estimating the present value today of some future amount accounting for the discount rate (r)

NPV= Future Value ÷ (1+r)^t

Example:

Future cost of a disease at time T = \$1,000

```
Discount rate: r = 4%
```

Time T= 3 years

```
NPV = $1,000/ (1.04)<sup>3</sup> = $889
```

The present cost of a future disease is \$889 in this example.

Methods for Decision Optimization

- Cost-minimization analysis
- Cost-benefit analysis
- Cost-effectiveness analysis
- Cost-utility analysis

Cost-Minimization Analysis

- Only compare direct monetary costs associated with decisions
- Choose the minimum cost alternative

Minimize C – MB

- Where: C = Decision costs
 - MB = Decision Monetary Benefits

Cost-Benefit Analysis (CBA)

- Uses benefit-cost ratio that expresses the <u>monetary</u> benefits of a decision to the costs of that decision
 - Value of animals not infected due to vaccination
 - Value of farm production due to disease avoidance
- Choose the highest benefit-cost ratio

Maximize BC Ratio = MB / C

Where: C = Costs of decision MB = Monetary Benefits

Cost-Effectiveness Analysis (CEA)

- Uses cost- effectiveness ratio that expresses the <u>non-</u> <u>monetary</u> health benefits of a decision
 - # of infected animals
 - # of days farm not in production
- Used in fields where not appropriate to monetize benefit
 - E.g., value of life or quality of life

Cost-Effectiveness Analysis (CEA)

• Use CE Ratio to compare alternative decisions

CE Ratio = C / NMB

Where: C = Costs of Decision NMB = Non-Monetary Benefits

CEA Tradeoff Grid

Cost Differences (+)

Cost-Utility Analysis (CUA)

- Uses cost-utility ratio that expresses the benefits as weighted utility (QALY) of a decision
- Special case of CEA, but includes societal preferences
- Used in health technology assessments
- Quality- adjusted life years (QALY)
 = Time in health state * Utility
- Where utility is person specific: Perfect Health =1; Death =0

Cost-Utility Analysis (CUA) Cont.

• Like CEA use grid to compare CU ratios

CU Ratio = C / NMB

Where: C = Costs of Decision NMB = Non-Monetary Benefits

FINAL RECAP

KANSAS STATE UNIVERSITY Department of Agricultural Economics

Recap

- Animal diseases can have great negative economic impact
- Trade is an important component of U.S. production
- Producers make decisions based on a myriad of factors, which should be considered
- CBA, CEA, and CUA are all tools that can be used in decision making

Thank you for your attention. Are there any questions?

Jada M. Thompson, PhD Fellow in Animal Health Economics jmthomp@ksu.edu

KANSAS STATE Department of Agricultural Economics

References

- King, L.J. 2004. "Introduction Emerging Zoonoses and Pathogens of Public Health Concern." In *Revue Scientifique et Technique de l'OIE*.
- Jones, Kate E., Nikkita G. Patel, Marc A. Levy, Adam Storeygard, Deborah Balk, John L. Gittleman, and Peter Daszak. 2008. "Global Trends in Emerging Infectious Diseases." *Nature* 451 (7181): 990–93. doi:10.1038/nature06536.
- Rushton, Jonathan. 2012. "Animal Health and Livestock Food Systems." *EU Veterinary Week.* Brussels. October.
- Zepeda, C., M. Salman, A. Thiermann, J. Kellar, H. Rojas, and P. Willeberg. 2005. "The Role of Veterinary Epidemiology and Veterinary Services in Complying with the World Trade Organization SPS Agreement." *Preventive Veterinary Medicine* 67 (2–3): 125–40.
- Woolhouse, Mark, and Eleanor Gaunt. 2007. "Ecological Origins of Novel Human Pathogens." *Critical Reviews in Microbiology* 33 (4): 231–42.