## Carbon Credit Markets: Current Opportunities and Future Prospects

Micah Cameron-Harp and Dr. Nathan P. Hendricks Department of Agricultural Economics Kansas State University



## Who's paying for carbon credits and why?

## Corporate Climate Pledges

Cargill

# Cargill's Supply Chain Climate Commitment <u>Source</u>

**PepsiCo** 



**Microsoft** 





#### **Buyers**

- McDonald's
- Pepsi
- Microsoft
- Individuals

Buy carbon credits to offset their emissions.

#### **Intermediary**

- **Ecosystem Services Market** Consortium

Matches buyers with sellers and verifies the carbon offset.

#### **Sellers**

• Farmers

Implement a practice that sequesters carbon in the soil or reduces greenhouse gas emissions.

#### Demand

- How big is current demand?
  - 93 million carbon credits purchased in 2020
  - At \$15/credit this is roughly 1.4 billion dollars
  - Volume of sales increased by 33% since 2019
- Of the 1.3 million metric tons of offsets Microsoft contracted for 2021, almost 200,000 metric tons are from soil carbon sequestration
- Individuals offsetting emissions can serves as an additional source of demand for carbon credits



Quality assurance issues in carbon credits.

#### What determines carbon credit quality?

- 1. Additionality
- 2. Permanence
- 3. Leakage
- 4. Uncertainty

## What determines carbon credit quality?



- 2. Permanence
- 3. Leakage
- 4. Uncertainty



## What determines carbon credit quality?

- 1. Additionality
- 2. Permanence
- 3. Leakage
- 4. Uncertainty



#### What determines carbon credit quality?

- 1. Additionality
- 2. Permanence
- 3. Leakage
- 4. Uncertainty



## What determines carbon credit quality?

- 1. Additionality
- 2. Permanence
- 3. Leakage
- 4. Uncertainty



#### Carbon credit quality assurance







## Uncertainty - continued

| Practice Adopted                                                            | Estimated carbon sequestration per acre                       | Payment per acre (assuming \$15/ton CO2) |
|-----------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|
| No-till - Warm and dry climate - Loamy, Silty, or Clayey soil               | 0.08 tC/acre/year<br>(-0.06, 0.21)<br>- From Ogle et al. 2019 | \$4.40/acre/year                         |
| No-till - Warm and dry climate - Sandy soil                                 | 0.07 tC/acre/year<br>(-0.04, .19)<br>- From Ogle et al. 2019  | \$3.85/acre/year                         |
| Cover Cropping with NT - Hesston, KS - Late soybean in winter-wheat/sorghum | .15 tC/acre/year - From Blanco-Canquil et al. 2011            | \$8.24/acre/year                         |
| Cover Cropping with NT - Hesston, KS - Sunn hemp in winter wheat/sorghum    | .22 tC/acre/year - From Blanco-Canquil et al. 2011            | \$12.24/acre/year                        |



## Current Opportunities - KS

| Market<br>Administrator        | Eligibility Criteria                                                                                                                                                      | Data Required                                                                                     | Quantification<br>Methodology                               |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Bayer                          | Adopt cover-crops, no-till/strip-till, or both after Jan. 1, 2012                                                                                                         | Farm management records;<br>share enrolled acreage<br>using Climate FieldView<br>platform         | Unclear                                                     |
| Indigo – "Carbon<br>by Indigo" | Adopt at least one regenerative practice such as: cover crops, improving cover crop diversity or growth period, reduced tillage or fertilizer, diversifying crop rotation | 3-5 years of historical data plus current season data; Soil samples optional                      | Model and/or<br>Measure – VERRA<br>protocol                 |
| Nori                           | Adopted regenerative practices since 2010. No CRP for enrolled area since 2000.                                                                                           | 3 years of farm<br>management records prior<br>to new practice adoption,<br>soil samples optional | Comet Farm (USDA-<br>NRCS) and soil<br>samples if available |

## How big are the payments?

- Nori \$15 currently per Nori Carbon Removal Ton; Nori estimates producers generate 0.2-1.5 tons per acre/year → \$3/acre/year to \$22.50/acre/year
- Bayer \$3 acre/year for no-till/strip-till; \$6/acre/year for cover cropping; \$9/acre/year for adopting both
- Indigo estimates \$2/acre/year for cover crops, \$7/acre/year for reduced tillage, and \$8/acre/year for both in Garden City

$$Net \ Payment \ per \ acre = \frac{\$}{ton \ of \ carbon} \times \frac{tons \ of \ carbon \ sequested}{acre} - \frac{transaction \ cost}{cost}$$

• Example marginal cost: If soil sampling is required every 5 years, 5 samples are needed per 100 acres, and it's \$20 to run each sample. The cost of sampling a 100 acre project could be \$0.30/acre/year over a 10 year term.

#### What's next?

Ask questions of Market Administrators (e.g. Nori) before enrolling

- 1. Who owns the credits? → If the price of carbon goes up will my payment increase?
  - Indigo sells credits on producers behalf, Bayer is pay-for-practice, Nori gives the producers the credits to sell
- 2. Can my farm management data be shared after it's used to quantify carbon sequestration?
  - If yes, who is my management data being shared with?
- 3. How long does a field need to be enrolled in the program? What happens if the practice cannot be maintained for the length of the contract?

## Future policies and opportunties

- Growing Climate Solutions Act of 2021
  - Would authorize USDA to create two programs designed to assist producers in entering voluntary environmental credit markets
    - 1. Greenhouse Gas Technical Assistance Provider
    - 2. Third-Party Verifier Certification Program
- What if the cost of carbon increases?
  - The EU price of carbon was \$68 per ton in May 2021 and Futures Prices are currently around \$55
- Upcoming Market Administrators and Opportunities
  - Cargill Currently enrolling producers in Illinois, Indiana, Ohio, Missouri, Arkansas, Tennessee
  - **TruCarbon by TruTerra** launching this year and paying \$20 per ton; Truterra will pay for and handle soil testing
  - Ecosystem Services Market Consortium One project in KS with General Mills focused on wheat acreage. ESMC hopes to produce credits for additional services (water quality, erosion control, etc.)

#### Example Case: Nori

- For Croplands, the carbon fluxes are quantified using the COMET-Farm platform developed by scientists at Colorado State University in collaboration with USDA NRCS
  - COMET-Farm includes the following changes as eligible practices at present:

• Altering crop rotations and intensity

• Cover cropping or changing from annuals to perennials

• Changes to tilling frequency and intensity, along with different residue management

Adoption of improved irrigation management practices

• Switching synthetic fertilizers for organic matter additions

- Suppliers required to give GPS coordinates or GIS files indicating the project area
- Must have 3 years of data prior to the "Switch" date when a practice is adopted, and adopting must have occurred after Jan. 1st, 2010

• Minimum term for registering a project is 10 years

#### Nori – Data Collection

- Baseline Data Options
  - 1. Direct upload to Nori
  - 2. Instruct Data Manager at farm management system (Granular, MyJohnDeere, etc.) to transfer data
  - Create third party farm management data platform
  - 4. If baseline data are unavailable, Nori can use publicly available data to create baseline
- If a supplier provides additional data (e.g. soil testing) showing better outcomes than COMET predicts, Nori can adjust its quantification of credits
- Soil Metrics does the actual quantification of carbon fluxes

Example COMET Output

|                               | TCO2e/year, avg over 10 years |         |        |
|-------------------------------|-------------------------------|---------|--------|
|                               | Baseline                      | No Till |        |
| assume: field is 60 acres     |                               | Actual  | Change |
| SOC stock change              |                               |         |        |
| soil                          | -9.7                          | -41.4   | -31.7  |
| biomass                       | 0.0                           | 0.0     | 0.0    |
| dead                          | 0.0                           | 0.0     | 0.0    |
| CO2                           | 10.0                          | 8.0     | -2.0   |
| co                            | 0.0                           |         | 0.0    |
| N2O                           | 50.0                          | 48.0    | -2.0   |
| CH4                           | 5.0                           | 4.0     | -1.0   |
| Total                         | 55.3                          | 18.6    | -36.7  |
| Energy Use (Diesel only) GHGs |                               |         |        |
| CO2+ CH4+ N2O                 | 10.8                          | 2.3     | -8.5   |
| N2O                           |                               |         | 0      |
| CH4                           |                               |         | 0      |
| total energy use              | 10.8                          | 2.3     | -8.5   |
| Total GHGs                    | 66.1                          | 20.9    | -45.2  |

#### Nori – The Cost

- Verification is performed by third party actors who bid on suppliers' projects after the data is submitted to Nori.
- Suppliers choose the verifier and bear the cost of verification.

#### Nori - The Payoff

- The Suppliers receive 1 token per Nori removal ton split between Restricted and Unrestricted accounts. The split is determined by the project's score, a measure of the uncertainty and risk of retention
- So, a supplier producing 100 NRTs with a score of 50 will receive the same amount of Nori tokens as a supplier producing 75 NRTs with a score of 67.
  - Additional data verifying carbon sequestration will improve this score
- As of July, a Nori Carbon Removal Tonne was selling for \$15
- Nori states suppliers can generate between 0.2 to 1.5 tons of carbon per acre per year