
Historical fertilizer prices

- Most of the fertilizer price increase cannot be attributed to Russia
 - N prices tripled during 2021
 - Most of the price rise occurred during the 2nd half of the year

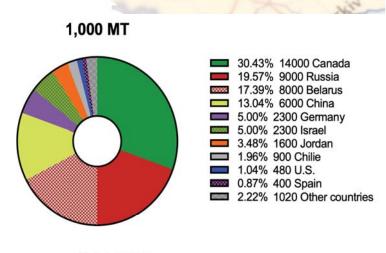
USDA fertilizer indexes – 20 years

Background on fertilizers

- 3 macronutrients needed by farmers N, P, and K
- Nitrogen fertilizers can be made from the nitrogen in the air
 - · Haber-Bosch process
 - Heavy use of natural gas in the process
 - Produces ammonia which is then the basis for all the other N fertilizers
 - Any country with adequate natural gas could be a nitrogen fertilizer producer
- Phosphorus (P) and Potassium (K) must be mined
 - Not every country has these reserves

When is fertilizer needed?

- N needs to be applied every year to crops requiring N (grasses)
- P and K are relatively stable in soil and could skip a year
 - Key is to make sure levels are in range (soil testing)
- Crop choice is important too
 - Legumes like soybeans fix their own nitrogen from the air and don't need an N application.



KANSAS STATE
Agricultural Economics

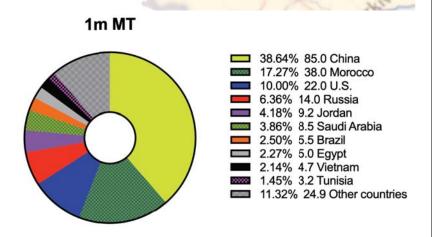
Potash (K) – leading production by country

- Canada is the leading producer in the world.
 - 30% of production
 - 14 million MT
- Russia is number 2
 - 20% of production
 - 9 million MT
- Belarus is number 3
 - 17% of production
 - 8 million MT
 - Already had sanctions 8/21
- Together, Russia and Belarus produce over a third of the world's potash

Total=46000

Potash (K) – United States

- U.S. depends almost entirely on imports
- Potash in the United States (1,000 MT)
 - Production 480
 - Imports 7,000
 - Exports 100
 - Consumption 7,400
- Where do imports come from?
 - 75% Canada
 - 10% Russia
 - 8% Belarus
 - 7% other countries
- Fertilizer use accounts for 85% of sales



KANSAS STATE
Agricultural Economics

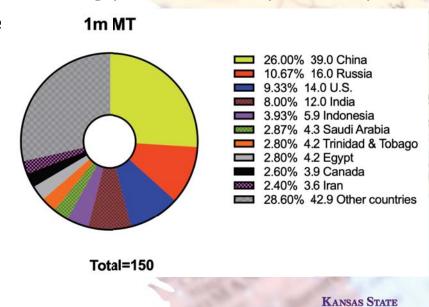
Phosphate Rock (P) – leading production by country

- China is the leading producer in the world
 - 39% of production
 - 85m MT
- U.S. is number 3
 - 10% of production
 - 22m MT
 - We use all our production domestically
- Russia is number 4
 - 6% of production
 - 14m MT

Total=220

Phosphate Rock (P) – United States

- Mostly self-sufficient
 - Imports were 13% in 2021
 - That percentage is often lower (2% in 2018)
- Phosphate in the United States (1m MT)
 - Production 22.0
 - Imports 2.4
 - Exports 0.0
 - Consumption 25.0
- Where do imports come from?
 - 87% Peru
 - 13% Morocco



Kansas State

Agricultural Econo

Ammonia (N) – leading production by country

- China is the leading produce in the world
 - 26% of world production
 - 39m MT
- Russia is number 2
 - 11% of world production
 - 16m MT
- U.S. is number 3
 - 9% of world production
 - 14m MT
- Many countries produce nitrogen
 - Almost 30% of world production

Ammonia (N) – United States

- U.S. is mostly self-sufficient
 - Imports 12%
 - 16 companies, 35 plants, 16 states
 - Plant capacity is at 84%
 - 88% of ammonia is for fertilizer
- Ammonia in the United States (1m MT)
 - Production 14.0
 - Imports 2.2
 - Exports 0.3
 - Consumption 16.0
- Where do imports come from?
 - 63% Trinidad and Tobago
 - 34% Canada
- No new announced plans for expansion

KANSAS STATE
Agricultural Economics

Effects of disruption to Russian supplied fertilizer

- U.S. is largely self-sufficient for:
 - Ammonia production (N)
 - Phosphate rock (P)
- No supply issue for N and P anticipated
 - · Likely price increases
- Potash (K) is the big question
 - · Both supply and price
 - · Most from Canada so less direct influence from Russia
 - Greatest price increases
 - Potash may be underpriced relative to anhydrous even before this started

Estimating price increases - Anhydrous

- Old model worked great until summer of 2021
- New model added inflation expectations

2020 model: Anhydrous ammonia (\$/ton) =

202

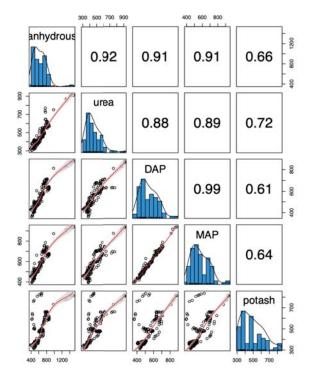
+ 43.4 * corn (\$/bu)

+ 3.18 * oil_9 mo lag (\$/ barrel)

2022 model: Anhydrous ammonia (\$/ton) =

- 104

+ 36.7 * corn (\$/bu)

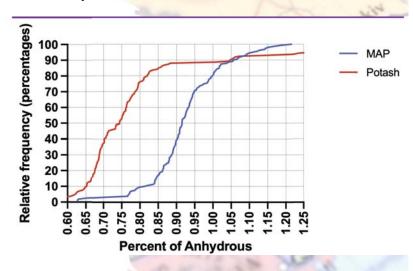

+ 2.14 * oil_6 mo lag (\$/ barrel)

+ 140 * inflation expectations

KANSAS STATE
Agricultural Economics

Other fertilizers are highly correlated to anhydrous

Representation of N, P, and K


- Nutrients
 - N Anhydrous ammonia (82-0-0)
 - P MAP (11-52-0)
 - K Potash (0-0-60)
- Correlations with anhydrous
 - MAP 0.91
 - Potash 0.66

Pricing relationship of anhydrous to MAP and Potash

- Map 92% of anhydrous price
- Potash 75% of anhydrous price
 - Wider variation is reflected on lower correlation

Predictions

- Assuming 9% inflation
- Both MAP and Potash are currently priced lower than expected relative to historical norms
- Possible increases
 - Anhydrous 20% increase
 - Map 60% increase
 - Potash 75% increase

Anhydrous			Corn			
			\$	6.00	\$ 7.00	\$ 8.00
Oil	\$	100	\$	1,590	\$ 1,627	\$ 1,664
	\$	125	\$	1,644	\$ 1,680	\$ 1,717
	\$	150	\$	1,697	\$ 1,734	\$ 1,771
MAP		Corn				
		\$	6.00	\$ 7.00	\$ 8.00	
Oil	\$	100	\$	1,352	\$ 1,383	\$ 1,414
	\$	125	\$	1,397	\$ 1,428	\$ 1,460
	\$	150	\$	1,443	\$ 1,474	\$ 1,505
Potash		Corn		_		
POLASII			\$	6.00	\$ 7.00	\$ 8.00
Oil	\$	100	\$	1,272	\$ 1,302	\$ 1,331
	\$	125	\$	1,315	\$ 1,344	\$ 1,374
	\$	150	\$	1,358	\$ 1,387	\$ 1,416

Agricultural Economics

Conclusions

- N, P, and K are likely headed higher due to higher fuel prices and because Russia is a major producer of all 3 fertilizer nutrients
- Availability of N and P should be adequate
- Availability of K less certain but importing from Canada helps
- Potash prices likely to rise the most
- Short-term Nitrogen needs are the most critical to maintain yields
- P and K needs could be restricted and still not hurt yields this year
- Higher fertilizer prices could add \$50/acre to cost of growing corn
 - Fertilizer might now be 35% of all crop expenses

