

Agribusiness Economics and Management (AEM)

Why Do Producers Partially Implement Biosecurity Recommendations of Experts?

Economics of Animal Health Session

Glynn Tonsor
Dept. of Agricultural Economics
Kansas State University
August 2, 2016

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2015-69004-23273. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Does Partial Biosecurity Reflect Producer Knowledge Gaps?

- Perhaps,
 - ➤ Ongoing education can help

Does Partial Biosecurity Reflect Producer Knowledge Gaps?

- Perhaps,
 - but we <u>must consider economic incentives</u>

Does Partial Biosecurity Reflect Producer Knowledge Gaps?

- Perhaps,
 - but we must consider economic incentives

✓ <u>Bottom-line</u>: lack of knowledge is likely NOT sole reason for partial implementation of recommended biosecurity measures

Are Available Biosecurity Measures Effective & Feasible to Implement?

Are Available Biosecurity Measures Effective & Feasible to Implement?

- Why create something with low odds of adoption?
 - How would investors on Shark Tank react?

Effectiveness & Feasibility

- Why create something with limited odds of adoption?
 - How would investors on Shark Tank react?

- Just because a biosecurity measure "works" doesn't mean it will be 100% implemented
 - Feasibility, effectiveness, & net econ. value are key
 - E.coli vaccines for fed cattle are prime example

Expert Opinion on Animal Disease Biosecurity in the U.S.

- Short online survey, April 2016
 - Nat'l Institute of Animal Ag. (NIAA, Katie Ambrose)
 - American Assoc. of Swine Vets. (AASV, Harry Snelson)
- N=130
 - Beef cattle, dairy cattle, and swine versions
- 7% Lower-bound, estimated response rate

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2015-69004-23273. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

9

Expert Survey – Tier 1 Focus

Diseases characterized as *Tier 1* are those of national concern and pose the most significant threat to U.S. agriculture as they have the highest risks and consequences.

Currently known *Tier 1* diseases include African swine fever, classical swine fever, foot and mouth disease, avian influenza, and virulent Newcastle disease.

Expert Survey – Risk Reduction Impact

"What share of national adoption (0-100%) do you expect the U.S. swine industry would achieve in the first year of a large Tier 1 disease outbreak if a given biosecurity measure reduced a firm's own risk of a Tier 1 disease outbreak by X% and reduced their closest neighbor's risk by Y%?"

Available answers: 0%, 1%-10%, 11%-20%, ..., 91%-100%

Expert Survey – Risk Reduction Impact

Impact of Own- & Neighbor				
	POOLED	BEEF	DAIRY	SWINE
Intercept	42.219	18.654	32.608	49.676
Own-Risk Reduction	0.225	0.288	0.237	0.110
Neighbor-Risk Reduction	0.238	0.273	0.230	0.197
Beef	-18.717			
Dairy	-9.391			
Sigma	21.038	21.938	22.572	17.416
Mean Adoption (%)	55.654	47.167	55.965	65.756
N	130	48	43	39
H0: Own-Risk=Neighbor-Risk	Fail to Reject	Fail to Reject	Fail to Reject	Fail to Reject
p-value	0.138	0.913	0.965	0.547
H0: Dairy=0, Beef=0	Reject			
p-value	0.000			

Estimates in *italics* are NOT significant at the 5% level.

Expert Survey – Risk Reduction Impact

Impact of Own- & Neighbor				
	POOLED	BEEF	DAIRY	SWINE
Intercept	42.219	18.654	32.608	49.676
Own-Risk Reduction	0.225	0.288	0.237	0.110
Neighbor-Risk Reduction	0.238	0.273	0.230	0.197
Beef	-18.717			
Dairy	-9.391			
Sigma	21.038	21.938	22.572	17.416
Mean Adoption (%)	55.654	47.167	55.965	65.756
N	130	48	43	39
H0: Own-Risk=Neighbor-Risk	Fail to Reject	Fail to Reject	Fail to Reject	Fail to Rejec
p-value	0.138	0.913	0.965	0.547
H0: Dairy=0, Beef=0	Reject			
p-value	0.000			

Expert Survey – Cost Impacts

"What share of national adoption do you expect the U.S. swine industry would achieve in the first year of a large Tier 1 disease outbreak if a given Tier 1 disease targeted biosecurity measure costs \$X/operation in one-time, up-front implementation costs and \$Y/animal/operation/year in annual maintenance costs on the operation?"

Available answers: 0%, 1%-10%, 11%-20%, ..., 91%-100%

Expert Survey – Cost Impacts

Impact of Fixed & Var				
	POOLED	BEEF	DAIRY	SWINE
Intercept	74.365	46.044	71.054	76.159
Fixed Costs	-0.002	-0.002	-0.004	0.000
Variable Costs	-2.189	0.388	-1.979	-6.006
Beef	-22.400			
Dairy	-9.952			
Sigma	23.963	21.730	25.898	22.387
Mean Adoption	46.275	36.333	48.756	56.026
N	129	48	43	38
H0: Fixed=Variable	Fail to Reject	Fail to Reject	Fail to Reject	Reject
p-value	0.137	0.860	0.466	0.020
H0: Dairy=0, Beef=0	Reject			
p-value	0.000			

Expert Survey – Cost Impacts

Impact of Fixed & Var				
	POOLED	BEEF	DAIRY	SWINE
Intercept	74.365	46.044	71.054	76.159
Fixed Costs	-0.002	-0.002	-0.004	0.000
Variable Costs	-2.189	0.388	-1.979	-6.006
Beef	-22.400			
Dairy	-9.952			
Sigma	23.963	21.730	25.898	22.387
Mean Adoption	46.275	36.333	48.756	56.026
N	129	48	43	38
H0: Fixed=Variable	Fail to Reject	Fail to Reject	Fail to Reject	Reject
p-value	0.137	0.860	0.466	0.020
H0: Dairy=0, Beef=0	Reject			
p-value	0.000			

Expert Survey: Benefit-Costs Views

If biosecurity measures aimed at reducing *Tier* 1 disease risks were put in place industrywide, How do you think the resulting benefits would be distributed through the pork industry's supply chain?

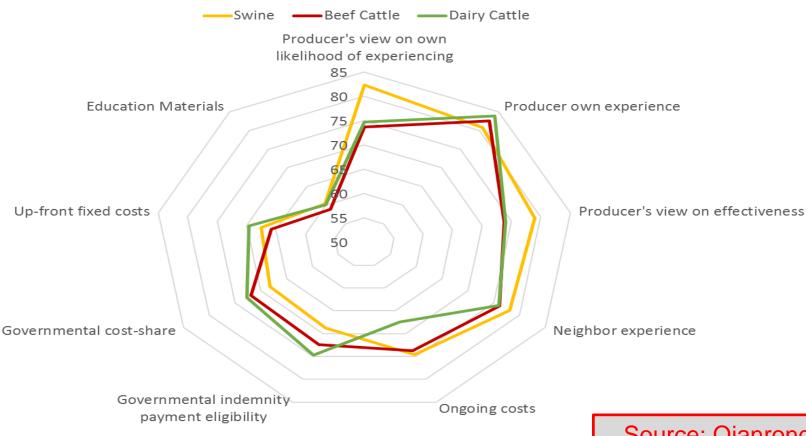
Please allocate the percentage (summing to 100%) each of the following sectors capture

Expert Survey: Benefit-Costs Views

	Industry Sectors	Benefits	Costs	Difference
5	Retailers	21.0	9.1	11.9
) air	Processors	26.9	18.4	8.5
Retailers Processors Dairy Producers Retailers Processors Feedlot Stocker/Backgroun CowCalf Retailers	Dairy Producers	52.1	72.6	-20.4
	Retailers	16.6	5.6	11.0
4-	Processors	20.9	9.7	11.2
Beef	Feedlot	28.0	30.8	-2.8
	Stocker/Backgrounder	16.3	22.3	-5.9
	CowCalf	18.1	31.6	-13.5
Swine	Retailers	12.2	2.6	9.5
	Processors	17.4	8.1	9.2
	Finishing	21.6	25.1	-3.5
	Nursery	14.9	23.6	-8.6
	Sow-Breeding	33.9	40.6	-6.6

N=86 (35 beef, 34 dairy, 17 swine) as of 4/1/16

Expert Survey: Adoption Decision Drivers


How important are the following factors in a typical swine producer's decision to adopt and implement new, additional biosecurity measures aimed at reducing *Tier 1* disease risks in the swine industry during the first year of a large outbreak?

Importance Scale Answers (0=not important; 100 = utmost importance)

Expert Survey: Adoption Decision Drivers

Importantce-ranking of New, Additional Biosecurity Adoption Decisions across Swine, Beef Cattle, and Dairy Cattle Industries

Expert Survey – Synthesis

 Adoption expected to be highest in Swine & lowest in Beef

 Own- & Neighbor- risk reductions matter ~equally

 Fixed costs may be more important than Variable costs

Expert Survey – Synthesis

Costs>Benefits for Producers underlies partial adoption...

 Views & Experience > Costs & Education in adoption decision

More information available at:

This presentation will be available in PDF format at:

http://www.agmanager.info/about/contributors/individual/tonsor.asp

Glynn Tonsor
Professor
Dept. of Agricultural Economics
Kansas State University
Email: gtonsor@ksu.edu

Twitter: @TonsorGlynn

Utilize a Wealth of Information Available at AgManager.info

About AgManager.info

AgManager.info website is a comprehensive source of information, analysis, and decision-making tools for agricultural producers, agribusinesses, and others. The site serves as a clearinghouse for applied outreach information emanating from the Department of Agricultural Economics at Kansas State University. It was created by combining departmental and faculty sites as well as creating new features exclusive to the AgManager.info site. The goal of this coordination is to improve the organization of web-based material and allow greater access for agricultural producers and other clientele.

Receive Weekly Email Updates for AgManager.Info

Receive Weekly Email Updates for AgManager.info:					
Enter Email:					
Submit Email					

http://www.AgManager.info/Evaluation/Email.htm

